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Biologically active suspensions

Self-propelling microorganisms in a viscous fluid — collective motion:
@ large-scale coherent flows,
@ giant density fluctuations

@ chaotic fluid mixing...

Figure: Bacterial turbulence on a surface. Weibel Lab, University of Wisconsin



Long-ranged hydrodynamic interactions

@ Slow decay of low-Re disturbance flows
o Far-field dominated by a force dipole singularity in 3D

@ Responsible for large-scale alignment and correlated motion
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Figure: Force dipoles due to  Figure: Pushers simulation. Saintillan &
inertialess swimming Shelley, J. R. Soc. Interface 9, 571 (2012)



Governing equations under confinement

2D confinement between rigid plates:

@ suppresses force dipole (1/r3) and amplifies source dipole (1/r?)
Liron & Mochon, J. Eng. Math. 10, 287 (1976)
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@ allows reorientation of fore-aft asymmetric particles with the flow
Brotto et al., Phys. Rev. Lett. 110, 038101 (2013)
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Figure: Force vs mass dipole Figure: Large-tail vs large-head




Continuum description

Kinetic model, coupling :

e distribution function W(x, p, t) satisfying a continuity equation:

ov

v = —Vx-(WR) =V, (Vp)+ DViV + DR ViV,

e mean-field fluid velocity u(x, t):
u(x, t) —// V(x',p,t) u’(x|x’, o) dx’ dp.

Saintillan & Shelley, Phys. Fluids 20, 123304 (2008)

Local phase properties:

@ concentration:  c(x,t) = [ ¥ dp Splay Bend 5
@ polarization: P(x,t) =1/c [, pV dp == ﬂ/
. -

@ nematic order: Q(x,t) =1/c fp( pp — s1)V dp iﬂﬂ
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Linear stability analysis

@ Uniform, isotropic base state:

Wo(x, t) = 2‘% uo(x, t) =0

@ Small perturbations:

V(x,p,t) = Wo +eW'(x,p,t), u(x,t)=ecu'(x,t) where|g|] <1

@ Linearization of the continuity equation:
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@ Coupling velocity field:
V-u d:ef// V(x,p,t) V-u’(x|x',o) dx dp
pJx

at leading order in 1 V-u' = -0V - P’



Linear theory

Fourier transform and eigenvalue problem
(k p)e/k x+at

@ Assume plane-wave perturbations: V'(x,p,t) =
k is the wave vector and o the complex growth rate

@ Expand Fourier amplitude W in discrete Fourier modes

U(9) = Z W, exp(ind) “Yk-p)

n=—oo

@ Linearized equation yields an eigenvalue problem for modes W

where 6 = cos

V_, R —ik! V_,
a—|—k2D Uy -k —1-Fe i —Fe vy
—— | Yy = —ik'(1—ocg) 0 —ik'(1—ocp) Vo

Dr Uy —Pe k1B 7
Wy ik’ 4 Wy
where Pe = 1/"2%;5 = [eGrentation is a signed Péclet number.

@ Non-dimensionalization: timescale D,;l and lengthscale DR
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Linear theory

Large-head instability

Generic long-wavelength instability
o Confirmed unstable region Pe < —1 for k = 0 (Brotto et al.)
e Finite k: instability only above threshold size L. = 27 /k.

@ Existence of two unstable regimes according to the system size.
Near the transition: concentration, polarization and splay waves
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Figure: Growth rate (Pe = —2) Critical size
11/22



Linear theory

Stabilizing external flow

Revisit stability with superimposed uniform flow Ug

o Diffusion balance: Wy () = Ae&<°s? with flow strength ¢ = "D—‘f

@ Linearized equation includes new advective terms:
ov’
ot

= —VV' . (vep+Uo) + Vo(ru' - p—V-u') + DVV + DrVIV’
+v((1=pp) - (Vo' - Uo + V0o - u') — W'Us - p)

@ Incompressibility becomes: V- u' = —fy, (V P Y Po)
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Figure: Polar state Added stability for k =0
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Discrete particle simulation

@ Periodic 2D domain of size L
@ Random initial positions and orientations (uniform, isotropic)
o RK4 integration of R;, p;, with u(R;) =3, u(R|R;, o)

o Efficient algorithm for interactions due to images
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Figure: N =1 particle and its 8 closest periodic images
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Numerical simulations

Nonlinear dynamics of large-heads

Heavily polarized density waves (N = 5000 particles, Pe = —2.2)

Figure: Snapshot Spatiotemporal  Pair distributions

Xx-concentration
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Numerical simulations

Simulations

Theory
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unstable transition: good

Nonlinear dynamics of large-heads
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@ Long-time dynamics: pattern formation

Figure: Flow during formation of a circular cluster
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Numerical simulations

Nonlinear dynamics of large-tails

Nonlinear long-wavelength instability (here N = 3600, Pe = 3.7)
@ large scale splay and bend modes / counter-rotating vortices

@ quasi-periodic dynamics
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Figure:  Particles snapshot Pair distributions Orientations
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Quasi-1D model with imposed flow

@ Recall: uniform external flow — alignment and stabilization

@ Derive a q1D kinetic model, assuming:
o flow Upex and stable orientation distribution Wo(0) = Aexp(£ cos 0)

o 1D: W(x,6,t) = c(x,t)Wo(8) and u(x,t) = u(x,t)ex

e Continuity & velocity — conservation law for c(x, t):
Jc  0q _ Da%

5 T o = Do with the flux g(x) = [Uo + vsPo (1 - UC(X)>]C(X)~

| —

negative coupling

o Traffic flow equation
e modeling of density waves
e shock at the tail et

o rarefaction wave at front
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Numerical simulations

Traffic flow of quasi-aligned swimmers

e Traffic jam simulation (N = 4000, £ = +4)

o Agreement with q1D kinetic model
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Figure: Snapshots Spatiotemporal x-concentration

(simulation vs theory)
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Conclusions

Hydrodynamic interactions in confined active suspensions:
@ spontaneous emergence of collective motion

o large-head swimmers
@ polarized density waves above a critical system size

o formation of dense circular patterns

o large-tail swimmers
@ quasi-periodic nematic modes and vortices

@ rescaling of 1D single-swimmer dynamics

o global traffic flow behavior (simulations & q1D continuous model)

Model relies on the dilute assumption — role of steric interactions?

Confined suspensions are tractable:
@ analytically: 2D & linearity of Stokes flow
e computationally: “fast” decay of interactions (1/r? in 2D)

— well-suited for broader the study of mechanisms behind collective

motion & self-organization in more complex many-body systems
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Conclusions

Figure: Bird flocks

Thank you
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