Theory and Simulation of Confined Active Suspensions

Adrien Lefauve & David Saintillan

Mechanical Science and Engineering University of Illinois at Urbana-Champaign

July 8, 2013

Overview

- Motivation and governing equations
- 2 Linear theory
- Numerical simulations
- 4 Conclusions

Section 1

Motivation and governing equations

Biologically active suspensions

Self-propelling microorganisms in a viscous fluid \rightarrow collective motion:

- large-scale coherent flows,
- giant density fluctuations
- chaotic fluid mixing...

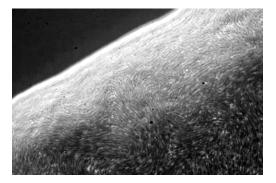


Figure: Bacterial turbulence on a surface. Weibel Lab, University of Wisconsin

Long-ranged hydrodynamic interactions

- Slow decay of low-Re disturbance flows
- Far-field dominated by a force dipole singularity in 3D
- Responsible for large-scale alignment and correlated motion

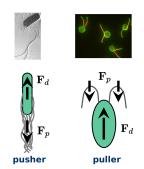


Figure: Force dipoles due to inertialess swimming

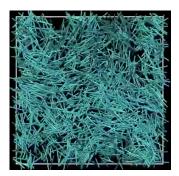


Figure: Pushers simulation. Saintillan & Shelley, J. R. Soc. Interface 9, 571 (2012)

Governing equations under confinement

2D confinement between rigid plates:

• suppresses force dipole $(1/r^3)$ and amplifies source dipole $(1/r^2)$ Liron & Mochon, J. Eng. Math. 10, 287 (1976)

$$\mathbf{u}^d(\mathbf{R}_i|\mathbf{R}_j,\boldsymbol{\sigma}_j) = \frac{1}{2\pi |\mathbf{R}_{ii}|^2} (2\hat{\mathbf{R}}_{ij}\hat{\mathbf{R}}_{ij} - \mathbf{I}) \cdot \boldsymbol{\sigma}_j, \text{ where } \boldsymbol{\sigma}_j = \sigma[\dot{\mathbf{R}}_j - \mathbf{u}(\mathbf{R}_j)]$$

 allows reorientation of fore-aft asymmetric particles with the flow Brotto et al., Phys. Rev. Lett. 110, 038101 (2013)

$$\dot{\mathbf{R}} = \mathbf{v}_{s} \mathbf{p} + \mathbf{u}
\dot{\mathbf{p}} = \mathbf{v}' (\mathbf{I} - \mathbf{p}\mathbf{p}) \cdot \nabla \mathbf{u} \cdot \mathbf{p} + \mathbf{v} (\mathbf{I} - \mathbf{p}\mathbf{p}) \cdot \mathbf{u}$$

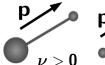


Figure: Force vs mass dipole

Figure: Large-tail vs large-head

Continuum description

Kinetic model, coupling:

• distribution function $\Psi(\mathbf{x}, \mathbf{p}, t)$ satisfying a continuity equation:

$$\frac{\partial \Psi}{\partial t} = -\nabla_{\mathbf{x}} \cdot (\Psi \, \dot{\mathbf{R}}) - \nabla_{\mathbf{p}} \cdot (\Psi \, \dot{\mathbf{p}}) + D \, \nabla_{\mathbf{x}}^2 \Psi + D_R \, \nabla_{\mathbf{p}}^2 \Psi,$$

• mean-field fluid velocity $\mathbf{u}(\mathbf{x}, t)$:

$$\mathbf{u}(\mathbf{x},t) := \int_{\mathbf{p}} \int_{\mathbf{x}'} \Psi(\mathbf{x}',\mathbf{p},t) \ \mathbf{u}^d(\mathbf{x}|\mathbf{x}',\sigma) \ d\mathbf{x}' \ d\mathbf{p}.$$

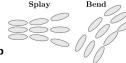
Saintillan & Shelley, Phys. Fluids 20, 123304 (2008)

Local phase properties:

• concentration: $c(\mathbf{x},t) = \int_{\mathbf{p}} \Psi \ d\mathbf{p}$

• polarization: $P(x,t) = 1/c \int_{p} p \Psi dp$

• nematic order: $\mathbf{Q}(\mathbf{x},t) = 1/c \int_{\mathbf{p}} (\mathbf{p}\mathbf{p} - \frac{1}{2}\mathbf{I}) \Psi d\mathbf{p}$



Section 2

Linear theory

Linear stability analysis

Uniform, isotropic base state:

$$\Psi_0(\mathbf{x},t) = \frac{c_0}{2\pi}, \qquad \mathbf{u}_0(\mathbf{x},t) = \mathbf{0}$$

Small perturbations:

$$\Psi(\mathbf{x},\mathbf{p},t) = \Psi_0 + \varepsilon \Psi'(\mathbf{x},\mathbf{p},t), \quad \mathbf{u}(\mathbf{x},t) = \varepsilon \mathbf{u}'(\mathbf{x},t) \quad \text{where } |\varepsilon| \ll 1$$

• Linearization of the continuity equation:

$$\frac{\partial \Psi'}{\partial t} = -\nabla_{x} \Psi' \cdot (v_{s} \mathbf{p}) + \Psi_{0} \Big(\nu \mathbf{u}' \cdot \mathbf{p} - \nabla \cdot \mathbf{u}' \Big) + D \nabla_{x}^{2} \Psi' + D_{R} \frac{\partial^{2} \Psi'}{\partial \theta^{2}}$$

• Coupling velocity field:

$$\nabla \cdot \mathbf{u} \stackrel{\text{def}}{=} \int_{\mathbf{p}} \int_{\mathbf{x}'} \Psi(\mathbf{x}', \mathbf{p}, t) \ \nabla \cdot \mathbf{u}^d(\mathbf{x} | \mathbf{x}', \boldsymbol{\sigma}) \ d\mathbf{x}' \ d\mathbf{p}$$

at leading order in ε : $\nabla \cdot \mathbf{u}' = -\sigma c_0 v_s \nabla \cdot \mathbf{P}'$

Fourier transform and eigenvalue problem

- Assume plane-wave perturbations: $\Psi'(\mathbf{x}, \mathbf{p}, t) = \tilde{\Psi}(\mathbf{k}, \mathbf{p})e^{i\mathbf{k}\cdot\mathbf{x}+\alpha t}$ **k** is the wave vector and α the complex growth rate.
- ullet Expand Fourier amplitude $ilde{\Psi}$ in discrete Fourier modes:

$$\tilde{\Psi}(\theta) = \sum_{n=-\infty}^{+\infty} \tilde{\Psi}_n \exp(in\theta)$$
 where $\theta = \cos^{-1}(\hat{\mathbf{k}} \cdot \mathbf{p})$

• Linearized equation yields an eigenvalue problem for modes $\tilde{\Psi}_n$:

$$\frac{\alpha + k^2 D}{D_R} \begin{bmatrix} \vdots \\ \tilde{\Psi}_{-2} \\ \tilde{\Psi}_{-1} \\ \tilde{\Psi}_{0} \\ \tilde{\Psi}_{1} \\ \tilde{\Psi}_{2} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \ddots & -4 & -ik' \\ -ik' & -1 - \frac{Pe}{2} & -ik' & -\frac{Pe}{2} \\ -ik'(1 - \sigma c_0) & 0 & -ik'(1 - \sigma c_0) \\ -\frac{Pe}{2} & -ik' & -1 - \frac{Pe}{2} & -ik' \\ & & -ik' & -4 & \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \tilde{\Psi}_{-2} \\ \tilde{\Psi}_{-1} \\ \tilde{\Psi}_{0} \\ \tilde{\Psi}_{1} \\ \tilde{\Psi}_{2} \\ \vdots \end{bmatrix}$$

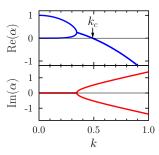
where $Pe = \nu \frac{\sigma c_0 v_s}{2D_R} = \frac{\text{reorientation}}{\text{diffusion}}$ is a signed Péclet number.

ullet Non-dimensionalization: timescale D_R^{-1} and lengthscale $rac{v_{\rm s}}{2D_R}$

Large-head instability

Generic long-wavelength instability

- Confirmed unstable region Pe < -1 for k = 0 (Brotto et al.)
- Finite k: instability only above threshold size $L_c = 2\pi/k_c$
- Existence of two unstable regimes according to the system size.
 Near the transition: concentration, polarization and splay waves



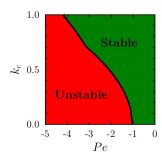


Figure: Growth rate (Pe = -2)

Critical size

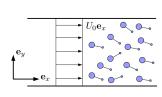
Stabilizing external flow

Revisit stability with superimposed uniform flow \mathbf{U}_0

- Diffusion balance: $\Psi_0(\theta)=Ae^{\xi\cos\theta}$, with flow strength $\xi=rac{
 u U_0}{D_R}$
- Linearized equation includes new advective terms:

$$\frac{\partial \Psi'}{\partial t} = -\nabla \Psi' \cdot (\mathbf{v}_s \mathbf{p} + \mathbf{U}_0) + \Psi_0(\nu \mathbf{u}' \cdot \mathbf{p} - \nabla \cdot \mathbf{u}') + D\nabla^2 \Psi' + D_R \nabla_p^2 \Psi' + \nu \Big((\mathbf{I} - \mathbf{p}\mathbf{p}) \cdot (\nabla_p \Psi' \cdot \mathbf{U}_0 + \nabla_p \Psi_0 \cdot \mathbf{u}') - \Psi' \mathbf{U}_0 \cdot \mathbf{p} \Big)$$

• Incompressibility becomes: $\nabla \cdot \mathbf{u}' = - \textit{fv}_s \left(\nabla \cdot \mathbf{P}' + \frac{\nabla c'}{c_0} \cdot \mathbf{P}_0 \right)$



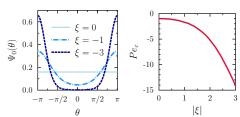


Figure: Polar state Added stability for k = 0

Section 3

Numerical simulations

Discrete particle simulation

- Periodic 2D domain of size L
- Random initial positions and orientations (uniform, isotropic)
- RK4 integration of $\dot{\mathbf{R}}_i$, $\dot{\mathbf{p}}_i$, with $\mathbf{u}(\mathbf{R}_i) = \sum_{j \neq i} \mathbf{u}^d(\mathbf{R}_i | \mathbf{R}_j, \sigma_j)$
- Efficient algorithm for interactions due to images

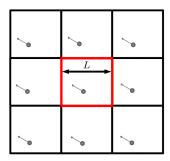


Figure: N = 1 particle and its 8 closest periodic images

Nonlinear dynamics of large-heads

Heavily polarized density waves (N = 5000 particles, Pe = -2.2)

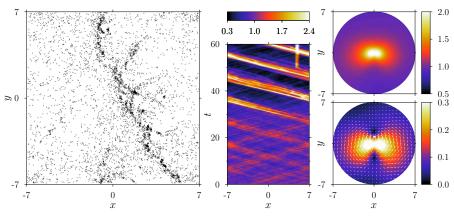


Figure:

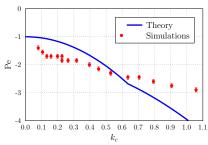
Snapshot

Spatiotemporal *x*-concentration

Pair distributions

Nonlinear dynamics of large-heads

 Critical system size for unstable transition: good agreement with linear stability



• Long-time dynamics: pattern formation

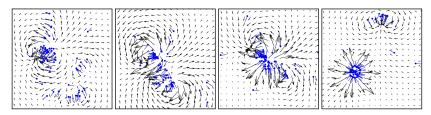
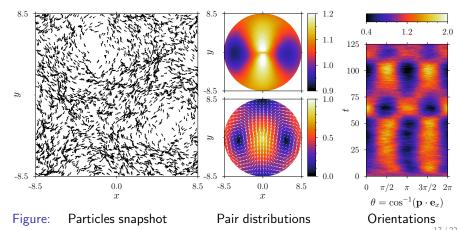


Figure: Flow during formation of a circular cluster

Nonlinear dynamics of large-tails

Nonlinear long-wavelength instability (here N = 3600, Pe = 3.7)

- large scale splay and bend modes / counter-rotating vortices
- quasi-periodic dynamics

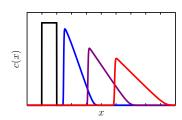


Quasi-1D model with imposed flow

- ullet Recall: uniform external flow o alignment and stabilization
- Derive a q1D kinetic model, assuming:
 - flow $U_0 \mathbf{e}_x$ and stable orientation distribution $\Psi_0(\theta) = A \exp(\xi \cos \theta)$
 - 1D: $\Psi(\mathbf{x}, \theta, t) = c(x, t)\Psi_0(\theta)$ and $\mathbf{u}(\mathbf{x}, t) = u(x, t)\mathbf{e}_x$
- Continuity & velocity \rightarrow conservation law for c(x, t):

$$\frac{\partial c}{\partial t} + \frac{\partial q}{\partial x} = D \frac{\partial^2 c}{\partial x^2} \quad \text{with the flux} \quad q(x) = \left[U_0 + v_s P_0 \underbrace{\left(1 - \sigma c(x) \right)}_{\text{negative coupling}} \right] c(x).$$

- Traffic flow equation
 - modeling of density waves
 - shock at the tail
 - rarefaction wave at front



Traffic flow of quasi-aligned swimmers

- Traffic jam simulation (N = 4000, $\xi = +4$)
- Agreement with q1D kinetic model



Figure:

Snapshots

Spatiotemporal *x*-concentration (simulation vs theory)

Section 4

Conclusions

Hydrodynamic interactions in confined active suspensions:

- spontaneous emergence of collective motion
 - large-head swimmers
 - polarized density waves above a critical system size
 - formation of dense circular patterns
 - large-tail swimmers
 - quasi-periodic nematic modes and vortices
- rescaling of 1D single-swimmer dynamics
 - global traffic flow behavior (simulations & q1D continuous model)

Model relies on the dilute assumption ightarrow role of steric interactions?

Confined suspensions are tractable:

- analytically: 2D & linearity of Stokes flow
- computationally: "fast" decay of interactions $(1/r^2 \text{ in } 2D)$
- ightarrow well-suited for broader the study of mechanisms behind collective motion & self-organization in more complex many-body systems

Figure: Bird flocks

Thank you!