

Regime transitions and energetics of sustained stratified shear flows

Adrien Lefauve Jamie Partridge Paul Linden

Mathematical
Underpinnings of
Stratified
Turbulence

Regime transitions and energetics of sustained stratified shear flows

Adrien Lefauve Jamie Partridge Paul Linden

Mathematical
Underpinnings of
Stratified
Turbulence

- Exchange flow between two reservoirs
- Two-layer stratified shear flow with sustained forcing

- Exchange flow between two reservoirs
- Two-layer stratified shear flow with sustained forcing

- Exchange flow between two reservoirs
- Two-layer stratified shear flow with sustained forcing
 - Dimensional parameters

geometry
$$L$$
 H fluid ν κ forcing θ $g'=g\frac{\Delta\rho}{\rho_0}$

- Exchange flow between two reservoirs
- Two-layer **stratified shear flow** with sustained forcing
- Dimensional parameters

Non-dimensional parameters

$$A = \frac{L}{H} = 30 \qquad Pr = \frac{\nu}{\kappa} = 700$$

Aspect ratio Prandtl number

$$Pr = \frac{\nu}{\kappa} = 700$$

Forcing
$$Re = \frac{\sqrt{g'HH}}{2\nu}$$

In this talk:

How do these **regime transitions scale with** θ , Re ?

Previous work and insight

- Two-layer **hydraulic control**: critical Froude number: $(\Delta U)^2 \sim g'H$
- Extra kinetic energy from acceleration along duct: $(\Delta U_+)^2 \sim g' L \sin \theta$ must be dissipated turbulently
 - → Non-dimensional scaling law?
 - Experimental confirmation?

yz plane

xz plane

xy plane

Stereo Particle Image Velocimetry
+

Planar Laser Induced Fluorescence

$$\rightarrow u, v, w, \rho(x, y_i, z, t_i)$$

yz plane

xz plane

xy plane

Stereo Particle Image Velocimetry
+

Planar Laser Induced Fluorescence

$$\rightarrow u, v, w, \rho(x, y_i, z, t_i)$$

in i = 1, ..., 30 successive planes \longrightarrow construct 3D volumes $u, v, w, \rho(x, y, z, t)$

vector yield ~ 4 \times 500 \times 30 \times 100 \times 300 ~ 2 \times 10 9 / experiment

Energy budgets in control volume

Kinetic and potential energy $\operatorname{averaged}$ in a $\operatorname{control}$ volume V of the duct

Energy budgets in control volume

Kinetic and potential energy $\operatorname{averaged}$ in a $\operatorname{control}$ volume V of the duct

From first principles:

$$\frac{dK}{dt} = \Phi_K + B_x - B_z - D$$

$$\frac{dP}{dt} = \Phi_P - B_x + B_z,$$

Energy budgets in control volume

Kinetic and potential energy $\operatorname{\mathbf{averaged}}$ in a control $\operatorname{\mathbf{volume}} V$ of the duct

From first principles:

$$\frac{dK}{dt} = \Phi_K + B_x - B_z - D$$

$$\frac{dP}{dt} = \Phi_P - B_x + B_z,$$

- Two-layer, near-hydrostatic
- High Re and Pr

- Two-layer, near-hydrostatic
- High Re and Pr
- 'Forced' flow $\theta > \alpha$

- Two-layer, near-hydrostatic
- High Re and Pr
- 'Forced' flow $\theta > \alpha$

- Two-layer, near-hydrostatic
- High Re and Pr
- 'Forced' flow $\theta > \alpha$

- Two-layer, near-hydrostatic
- High Re and Pr
- 'Forced' flow $\theta > \alpha$

- Two-layer, near-hydrostatic
- High Re and Pr
- 'Forced' flow $\theta > \alpha$

Single power throughput in any duct subvolume

$$\langle D \rangle_t = \frac{1}{4} Q_m \theta \approx \frac{1}{8} \theta$$

since the mass flow rate $Q_m \equiv \langle \rho u \rangle_{x,y,z,t} \approx \frac{1}{2}$ due to hydraulic control/Froude condition

2D/3D kinetic energy budgets

- Two-layer, near-hydrostatic
- High Re and Pr
- 'Forced' flow $\theta > \alpha$

Single power throughput in any duct subvolume

$$\langle D \rangle_t = \frac{1}{4} Q_m \theta \approx \frac{1}{8} \theta$$

since the mass flow rate $Q_m \equiv \langle \rho u \rangle_{x,y,z,t} \approx \frac{1}{2}$ due to hydraulic control/Froude condition

2D/3D kinetic energy budgets

Single power throughput in any duct subvolume

$$\langle D \rangle_t = \frac{1}{4} Q_m \theta \approx \frac{1}{8} \theta$$

2D/3D kinetic energy budgets

Single power throughput in any duct subvolume

$$\langle D \rangle_t = \frac{1}{4} Q_m \theta \approx \frac{1}{8} \theta$$

$$\frac{Re}{2}\langle D\rangle_t = \langle s_{ij}s_{ij}\rangle_{x,y,z,t} \approx \frac{1}{16}\theta Re$$

2D/3D kinetic energy budgets

Single power throughput in any duct subvolume

$$\langle D \rangle_t = \frac{1}{4} Q_m \theta \approx \frac{1}{8} \theta$$

$$\frac{Re}{2}\langle D\rangle_{t} = \langle \mathbf{s}_{ij}\mathbf{s}_{ij}\rangle_{x,y,z,t} \approx \frac{1}{16}\theta Re$$

$$\langle \mathbf{s}_{ij}^{2d}\mathbf{s}_{ij}^{2d}\rangle_{y,z,t} + \langle \mathbf{s}_{ij}^{3d}\mathbf{s}_{ij}^{3d}\rangle_{x,y,z,t} \rangle \approx \frac{1}{16}\theta Re \qquad ('2D' = x-averaged')$$

2D/3D kinetic energy budgets

Single power throughput in any duct subvolume

$$\langle D \rangle_t = \frac{1}{4} Q_m \theta \approx \frac{1}{8} \theta$$

$$\frac{Re}{2}\langle D\rangle_{t} = \langle \mathbf{s}_{ij}\mathbf{s}_{ij}\rangle_{x,y,z,t} \approx \frac{1}{16}\theta Re$$

$$\langle \mathbf{s}_{ij}^{2d}\mathbf{s}_{ij}^{2d}\rangle_{y,z,t} + \langle \mathbf{s}_{ij}^{3d}\mathbf{s}_{ij}^{3d}\rangle_{x,y,z,t} \rangle \approx \frac{1}{16}\theta Re \qquad ('2D' = x-averaged')$$

Low θRe

High θRe

Hypothesis: regime transitions are caused by S^{3d} following a plateau in S^{2d} and scale with θRe

Experimental validation of the $\theta\,Re$ scaling

Experimental validation of the θRe scaling

Experimental validation of the θRe scaling

Experimental validation of the θRe scaling

Experimental validation of the model and hypothesis

Experimental validation of the model and hypothesis

Further details about the transitions:

- L \rightarrow H: Holmboe waves caused by increase in S^{2d}
- H \rightarrow I and I \rightarrow T: caused by increase in S^{3d}

Holmboe regime

$$\theta = 1^{\circ}, Re = 1455$$

$$s_{ij}s_{ij}(x, y, z, t)$$

$$\mathsf{s}_{ij}^{2d}\mathsf{s}_{ij}^{2d}(y,z,t)$$

$$\mathsf{s}_{ij}^{3d}\mathsf{s}_{ij}^{3d}(x,y,z,t)$$

Holmboe regime

$$\theta = 1^{\circ}, Re = 1455$$

$$s_{ij}s_{ij}(x, y, z, t)$$

$$\mathsf{s}_{ij}^{2d}\mathsf{s}_{ij}^{2d}(y,z,t)$$

$$\mathsf{s}_{ij}^{3d}\mathsf{s}_{ij}^{3d}(x,y,z,t)$$

Turbulent regime

$$\theta = 6^{\circ}, Re = 1256$$

$$s_{ij}s_{ij}(x, y, z, t)$$

$$\mathsf{s}_{ij}^{2d}\mathsf{s}_{ij}^{2d}(y,z,t)$$

$$\mathsf{s}_{ij}^{3d}\mathsf{s}_{ij}^{3d}(x,y,z,t)$$

More details in: Lefauve, Partridge & Linden, J. Fluid Mech. 875: 657-698 (2019)