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In this talk: 
How do these regime transitions scale with   ?θ, Re
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• Two-layer hydraulic control: critical Froude number:  !  

• Extra kinetic energy from acceleration along duct:  !    

      must be dissipated turbulently 

                 Non-dimensional scaling law? 

                Experimental confirmation? 

(ΔU)2 ∼ g′�H

(ΔU+)2 ∼ g′�L sin θ
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Volumetric measurements Partridge, Lefauve & Dalziel (2019)
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Volumetric measurements 

pulsed laser 

fast scanning system

xz plane

u, v, w, ρ (x, y, z, t)in !  successive planes        construct 3D volumes  
                                     

          vector yield ~                                                          / experiment

i = 1, …, 30

4 × 500 × 30 × 100 × 300 ∼ 2 × 109

Stereo Particle Image Velocimetry 
                        + 
Planar Laser Induced Fluorescence

u, v, w, ρ (x, yi, z, ti)

yz plane

Partridge, Lefauve & Dalziel (2019)
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Figure 6.2 Schematics and notation used for the evaluation of energy fluxes under hydraulic assumptions. The
control volume V is shaded in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface is denoted by , the neutral level z = 0 by ,
the pressure distribution on the L and R boundaries by , and p = 0 at the interface by

theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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which, after some manipulation, becomes

∂P

∂ t
= � ∂ (uiP)

∂xi| {z }
advection

�Ri (sinqru� cosqrw)
| {z }

buoyancy flux

+
Ri

Re Pr

h ∂
∂xi

�
(zcosq � xsinq)∂r

∂xi

 

| {z }
diffusion

�
�

cosq ∂r
∂ z

� sinq ∂r
∂x

�

| {z }
conversion to internal energy

i
. (6.12)

Volume-averaging

We define the volume-averaged potential energy similarly to (6.5) as

P(t) := hPixyz :=
1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
P dxdydz. (6.13)

By volume averaging (6.12) and using the formulas for the integration by parts in (6.7), we derive the

evolution of P as
dP
dt

= FP �Bx +Bz, (6.14)

where Bx, Bz are the internal buoyancy fluxes defined in (6.9b)-(6.9c) and we define the sum of

potential energy fluxes FP and its three distinct contributions as

FP := Fadv
P +Fdif

P +Fint
P , (6.15a)

Fadv
P := Ri

1
`

�
cosq hzruiyz|L�R � sinq hxruiyz|L�R

�
, (6.15b)

Fdif
P :=

Ri
RePr

1
`

⇣
sinq hx∂r

∂x
iyz
��
L�R � cosq hz∂r

∂x
iyz
��
L�R

⌘
, (6.15c)

Fint
P :=

Ri
RePr

⇣
� 1

`
sinqhriyz|L�R +

1
2

cosqhrixy|B�T

⌘
. (6.15d)

By analogy with the notation ·|L�R, the notation ·|B�T indicates the difference between the value of ·

at the bottom (‘B’, z =�1) and at the top (‘T’, z = 1). The potential energy flux FP is composed of

an external advective term Fadv
P , an external diffusive term Fdif

P , and an internal term Fint
P converting

internal energy I to potential energy (this conversion does not necessitate macroscopic fluid motions

and is always positive for stable stratification whether the fluid is at rest or in motion).

6.2.3 Summary: complete K and P budgets

The temporal evolutions of the volume-averaged kinetic energy (6.8) and potential energy (6.14) are

summarised in figure 6.1. The control volume V is composed of three energy reservoirs: kinetic energy

K, potential energy P and internal energy I. All energy of fluid not contained in V is represented by
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(where typically `⇡ 10�12 and x̄ ⇡�12), but in the discussion of the equations below we will also

consider the case where V consists of the whole duct (`= 2A = 60, x̄ = 0).

The volume-averaged kinetic energy K is defined as

K(t) := hK ixyz :=
1
4`

Z

V
K dV =

1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
K dxdydz, (6.5)

where in this Chapter, h·ixyz denotes averaging over the control volume V .

We obtain the evolution equation of K by volume-averaging (6.3):

dK
dt

= �
D ∂

∂x
huK iyz

E

x
�
D ∂

∂y
hvK ixz

E

y
�
D ∂

∂ z
hwK ixy

E

z

�
D ∂

∂x
hupiyz

E

x
�
D ∂

∂y
hvpixz

E

y
�
D ∂

∂ z
hwpixy

E

z
(6.6)

+
2

Re

D ∂
∂x

huisi1iyz

E

x
+
D ∂

∂y
huisi2ixz

E

y
+
D ∂

∂ z
huisi3ixy

E

z

+ hBxixyz �hBzixyz �h✏ixyz.

Applying the divergence theorem, we integrate by parts all the divergence (diffusive) terms in the

first three lines of the RHS of (6.6) as

D ∂
∂x

huK iyz

E

x
=

1
`
huK iyz

���
x̄+`/2

x=x̄�`/2
, (6.7a)

D ∂
∂y

hvK ixz

E

y
=

1
2
hvK ixz

���
1

y=�1
, (6.7b)

D ∂
∂ z

hwK ixy

E

z
=

1
2
hwK ixy

���
1

z=�1
. (6.7c)

...

All the mean gradients along y and z (of the form (6.7b)-(6.7c)) cancel by the no-slip conditions

ui = 0 on the solid boundaries y,z =±1. The mean gradients along x (of the form (6.7a)) take the

general form (1/`)h·iyz|R�L where ·|R�L denotes the difference between the value of · on the right of

the volume (‘R’, x = x̄+ `/2) and its value on left of the volume (‘L’, x = x̄� `/2). We thus have

dK
dt

= FK +Bx �Bz �D, (6.8)

Kinetic and potential energy averaged in a control volume     of the duct

6.2 Energetics analysis: volume-averaged budgets 207

where we define the sum of kinetic energy boundary fluxes FK , the volume-averaged horizontal and

vertical buoyancy flux Bx, Bz, and volume-averaged viscous dissipation D as

FK :=
1
`

⇣
huK iyz|L�R
| {z }

advection

+hupiyz|L�R
| {z }

pressure

� 2
Re

huisi1iyz|L�R
| {z }

viscous

⌘
:= Fadv

K +Fpre
K +Fvis

K , (6.9a)

Bx := hBxixyz, (6.9b)

Bz := hBzixyz, (6.9c)

D := h✏ixyz. (6.9d)

The rate of change of volume-averaged kinetic energy is therefore given by the sum of

• boundary fluxes at the left and right boundaries of V , FK , which we have split into an advective,

a pressure and a viscous contribution;

• internal fluxes within the volume V : two distinct buoyancy fluxes and a negative viscous

dissipation term. This last term acts as a source to the internal energy of the flow that we denote

by I .

The estimation and relative role of each term are discussed in § 6.2.3, after the derivation of the

evolution of the potential energy in the next section.

6.2.2 Potential energy

Instantaneous, local evolution

We define the potential energy field P as

P(xxx, t) := Ri(zcosq � xsinq)r, (6.10)

since the duct (x,y,z) coordinate system is tilted at angle q with respect to the direction of gravity.

The evolution equation for P is obtained from the density conservation equation (4.5c):

Ri(zcosq � xsinq)∂r
∂ t

=�Ri(zcosq � xsinq)∂ (rui)

∂xi
+

Ri
RePr

(zcosq � xsinq) ∂ 2r
∂xixi

, (6.11)
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Figure 6.2 Schematics and notation used for the evaluation of energy fluxes under hydraulic assumptions. The
control volume V is shaded in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface is denoted by , the neutral level z = 0 by ,
the pressure distribution on the L and R boundaries by , and p = 0 at the interface by

theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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which, after some manipulation, becomes

∂P

∂ t
= � ∂ (uiP)

∂xi| {z }
advection

�Ri (sinqru� cosqrw)
| {z }

buoyancy flux

+
Ri

Re Pr

h ∂
∂xi

�
(zcosq � xsinq)∂r

∂xi

 

| {z }
diffusion

�
�

cosq ∂r
∂ z

� sinq ∂r
∂x

�

| {z }
conversion to internal energy

i
. (6.12)

Volume-averaging

We define the volume-averaged potential energy similarly to (6.5) as

P(t) := hPixyz :=
1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
P dxdydz. (6.13)

By volume averaging (6.12) and using the formulas for the integration by parts in (6.7), we derive the

evolution of P as
dP
dt

= FP �Bx +Bz, (6.14)

where Bx, Bz are the internal buoyancy fluxes defined in (6.9b)-(6.9c) and we define the sum of

potential energy fluxes FP and its three distinct contributions as

FP := Fadv
P +Fdif

P +Fint
P , (6.15a)

Fadv
P := Ri

1
`

�
cosq hzruiyz|L�R � sinq hxruiyz|L�R

�
, (6.15b)

Fdif
P :=

Ri
RePr

1
`

⇣
sinq hx∂r

∂x
iyz
��
L�R � cosq hz∂r

∂x
iyz
��
L�R

⌘
, (6.15c)

Fint
P :=

Ri
RePr

⇣
� 1

`
sinqhriyz|L�R +

1
2

cosqhrixy|B�T

⌘
. (6.15d)

By analogy with the notation ·|L�R, the notation ·|B�T indicates the difference between the value of ·

at the bottom (‘B’, z =�1) and at the top (‘T’, z = 1). The potential energy flux FP is composed of

an external advective term Fadv
P , an external diffusive term Fdif

P , and an internal term Fint
P converting

internal energy I to potential energy (this conversion does not necessitate macroscopic fluid motions

and is always positive for stable stratification whether the fluid is at rest or in motion).

6.2.3 Summary: complete K and P budgets

The temporal evolutions of the volume-averaged kinetic energy (6.8) and potential energy (6.14) are

summarised in figure 6.1. The control volume V is composed of three energy reservoirs: kinetic energy

K, potential energy P and internal energy I. All energy of fluid not contained in V is represented by
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(where typically `⇡ 10�12 and x̄ ⇡�12), but in the discussion of the equations below we will also

consider the case where V consists of the whole duct (`= 2A = 60, x̄ = 0).

The volume-averaged kinetic energy K is defined as

K(t) := hK ixyz :=
1
4`

Z

V
K dV =

1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
K dxdydz, (6.5)

where in this Chapter, h·ixyz denotes averaging over the control volume V .

We obtain the evolution equation of K by volume-averaging (6.3):

dK
dt

= �
D ∂
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huK iyz

E

x
�
D ∂
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(6.6)
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huisi2ixz

E

y
+
D ∂

∂ z
huisi3ixy

E
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+ hBxixyz �hBzixyz �h✏ixyz.

Applying the divergence theorem, we integrate by parts all the divergence (diffusive) terms in the

first three lines of the RHS of (6.6) as

D ∂
∂x

huK iyz

E

x
=

1
`
huK iyz

���
x̄+`/2

x=x̄�`/2
, (6.7a)
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, (6.7b)
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2
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���
1

z=�1
. (6.7c)

...

All the mean gradients along y and z (of the form (6.7b)-(6.7c)) cancel by the no-slip conditions

ui = 0 on the solid boundaries y,z =±1. The mean gradients along x (of the form (6.7a)) take the

general form (1/`)h·iyz|R�L where ·|R�L denotes the difference between the value of · on the right of

the volume (‘R’, x = x̄+ `/2) and its value on left of the volume (‘L’, x = x̄� `/2). We thus have

dK
dt

= FK +Bx �Bz �D, (6.8)

Kinetic and potential energy averaged in a control volume     of the duct
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first three lines of the RHS of (6.6) as
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...

All the mean gradients along y and z (of the form (6.7b)-(6.7c)) cancel by the no-slip conditions

ui = 0 on the solid boundaries y,z =±1. The mean gradients along x (of the form (6.7a)) take the

general form (1/`)h·iyz|R�L where ·|R�L denotes the difference between the value of · on the right of

the volume (‘R’, x = x̄+ `/2) and its value on left of the volume (‘L’, x = x̄� `/2). We thus have

dK
dt

= FK +Bx �Bz �D, (6.8)
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which, after some manipulation, becomes
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Volume-averaging

We define the volume-averaged potential energy similarly to (6.5) as

P(t) := hPixyz :=
1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
P dxdydz. (6.13)

By volume averaging (6.12) and using the formulas for the integration by parts in (6.7), we derive the

evolution of P as
dP
dt

= FP �Bx +Bz, (6.14)

where Bx, Bz are the internal buoyancy fluxes defined in (6.9b)-(6.9c) and we define the sum of

potential energy fluxes FP and its three distinct contributions as

FP := Fadv
P +Fdif

P +Fint
P , (6.15a)

Fadv
P := Ri

1
`

�
cosq hzruiyz|L�R � sinq hxruiyz|L�R

�
, (6.15b)

Fdif
P :=

Ri
RePr

1
`

⇣
sinq hx∂r

∂x
iyz
��
L�R � cosq hz∂r

∂x
iyz
��
L�R

⌘
, (6.15c)

Fint
P :=

Ri
RePr

⇣
� 1

`
sinqhriyz|L�R +

1
2

cosqhrixy|B�T

⌘
. (6.15d)

By analogy with the notation ·|L�R, the notation ·|B�T indicates the difference between the value of ·

at the bottom (‘B’, z =�1) and at the top (‘T’, z = 1). The potential energy flux FP is composed of

an external advective term Fadv
P , an external diffusive term Fdif

P , and an internal term Fint
P converting

internal energy I to potential energy (this conversion does not necessitate macroscopic fluid motions

and is always positive for stable stratification whether the fluid is at rest or in motion).

6.2.3 Summary: complete K and P budgets

The temporal evolutions of the volume-averaged kinetic energy (6.8) and potential energy (6.14) are

summarised in figure 6.1. The control volume V is composed of three energy reservoirs: kinetic energy

K, potential energy P and internal energy I. All energy of fluid not contained in V is represented by

From first principles:
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where we define the sum of kinetic energy boundary fluxes FK , the volume-averaged horizontal and

vertical buoyancy flux Bx, Bz, and volume-averaged viscous dissipation D as

FK :=
1
`

⇣
huK iyz|L�R
| {z }

advection

+hupiyz|L�R
| {z }

pressure

� 2
Re

huisi1iyz|L�R
| {z }

viscous

⌘
:= Fadv

K +Fpre
K +Fvis

K , (6.9a)

Bx := hBxixyz, (6.9b)

Bz := hBzixyz, (6.9c)

D := h✏ixyz. (6.9d)

The rate of change of volume-averaged kinetic energy is therefore given by the sum of

• boundary fluxes at the left and right boundaries of V , FK , which we have split into an advective,

a pressure and a viscous contribution;

• internal fluxes within the volume V : two distinct buoyancy fluxes and a negative viscous

dissipation term. This last term acts as a source to the internal energy of the flow that we denote

by I .

The estimation and relative role of each term are discussed in § 6.2.3, after the derivation of the

evolution of the potential energy in the next section.

6.2.2 Potential energy

Instantaneous, local evolution

We define the potential energy field P as

P(xxx, t) := Ri(zcosq � xsinq)r, (6.10)

since the duct (x,y,z) coordinate system is tilted at angle q with respect to the direction of gravity.

The evolution equation for P is obtained from the density conservation equation (4.5c):

Ri(zcosq � xsinq)∂r
∂ t

=�Ri(zcosq � xsinq)∂ (rui)

∂xi
+

Ri
RePr

(zcosq � xsinq) ∂ 2r
∂xixi

, (6.11)
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Figure 6.2 Schematics and notation used for the evaluation of energy fluxes under hydraulic assumptions. The
control volume V is shaded in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface is denoted by , the neutral level z = 0 by ,
the pressure distribution on the L and R boundaries by , and p = 0 at the interface by

theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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which, after some manipulation, becomes

∂P

∂ t
= � ∂ (uiP)

∂xi| {z }
advection

�Ri (sinqru� cosqrw)
| {z }

buoyancy flux

+
Ri

Re Pr

h ∂
∂xi

�
(zcosq � xsinq)∂r

∂xi

 

| {z }
diffusion

�
�

cosq ∂r
∂ z

� sinq ∂r
∂x

�

| {z }
conversion to internal energy

i
. (6.12)

Volume-averaging

We define the volume-averaged potential energy similarly to (6.5) as

P(t) := hPixyz :=
1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
P dxdydz. (6.13)

By volume averaging (6.12) and using the formulas for the integration by parts in (6.7), we derive the

evolution of P as
dP
dt

= FP �Bx +Bz, (6.14)

where Bx, Bz are the internal buoyancy fluxes defined in (6.9b)-(6.9c) and we define the sum of

potential energy fluxes FP and its three distinct contributions as

FP := Fadv
P +Fdif

P +Fint
P , (6.15a)

Fadv
P := Ri

1
`

�
cosq hzruiyz|L�R � sinq hxruiyz|L�R

�
, (6.15b)

Fdif
P :=

Ri
RePr

1
`

⇣
sinq hx∂r

∂x
iyz
��
L�R � cosq hz∂r

∂x
iyz
��
L�R

⌘
, (6.15c)

Fint
P :=

Ri
RePr

⇣
� 1

`
sinqhriyz|L�R +

1
2

cosqhrixy|B�T

⌘
. (6.15d)

By analogy with the notation ·|L�R, the notation ·|B�T indicates the difference between the value of ·

at the bottom (‘B’, z =�1) and at the top (‘T’, z = 1). The potential energy flux FP is composed of

an external advective term Fadv
P , an external diffusive term Fdif

P , and an internal term Fint
P converting

internal energy I to potential energy (this conversion does not necessitate macroscopic fluid motions

and is always positive for stable stratification whether the fluid is at rest or in motion).

6.2.3 Summary: complete K and P budgets

The temporal evolutions of the volume-averaged kinetic energy (6.8) and potential energy (6.14) are

summarised in figure 6.1. The control volume V is composed of three energy reservoirs: kinetic energy

K, potential energy P and internal energy I. All energy of fluid not contained in V is represented by
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(where typically `⇡ 10�12 and x̄ ⇡�12), but in the discussion of the equations below we will also

consider the case where V consists of the whole duct (`= 2A = 60, x̄ = 0).

The volume-averaged kinetic energy K is defined as

K(t) := hK ixyz :=
1
4`

Z

V
K dV =

1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
K dxdydz, (6.5)

where in this Chapter, h·ixyz denotes averaging over the control volume V .

We obtain the evolution equation of K by volume-averaging (6.3):

dK
dt

= �
D ∂

∂x
huK iyz

E

x
�
D ∂

∂y
hvK ixz

E

y
�
D ∂

∂ z
hwK ixy

E

z

�
D ∂

∂x
hupiyz

E

x
�
D ∂

∂y
hvpixz

E

y
�
D ∂

∂ z
hwpixy

E

z
(6.6)

+
2

Re

D ∂
∂x

huisi1iyz

E

x
+
D ∂

∂y
huisi2ixz

E

y
+
D ∂

∂ z
huisi3ixy

E

z

+ hBxixyz �hBzixyz �h✏ixyz.

Applying the divergence theorem, we integrate by parts all the divergence (diffusive) terms in the

first three lines of the RHS of (6.6) as

D ∂
∂x

huK iyz

E

x
=

1
`
huK iyz

���
x̄+`/2

x=x̄�`/2
, (6.7a)

D ∂
∂y

hvK ixz

E

y
=

1
2
hvK ixz

���
1

y=�1
, (6.7b)

D ∂
∂ z

hwK ixy

E

z
=

1
2
hwK ixy

���
1

z=�1
. (6.7c)

...

All the mean gradients along y and z (of the form (6.7b)-(6.7c)) cancel by the no-slip conditions

ui = 0 on the solid boundaries y,z =±1. The mean gradients along x (of the form (6.7a)) take the

general form (1/`)h·iyz|R�L where ·|R�L denotes the difference between the value of · on the right of

the volume (‘R’, x = x̄+ `/2) and its value on left of the volume (‘L’, x = x̄� `/2). We thus have

dK
dt

= FK +Bx �Bz �D, (6.8)

Kinetic and potential energy averaged in a control volume     of the duct
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(where typically `⇡ 10�12 and x̄ ⇡�12), but in the discussion of the equations below we will also

consider the case where V consists of the whole duct (`= 2A = 60, x̄ = 0).

The volume-averaged kinetic energy K is defined as

K(t) := hK ixyz :=
1
4`

Z

V
K dV =

1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
K dxdydz, (6.5)

where in this Chapter, h·ixyz denotes averaging over the control volume V .

We obtain the evolution equation of K by volume-averaging (6.3):

dK
dt

= �
D ∂
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+
2

Re
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huisi1iyz
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+
D ∂

∂y
huisi2ixz

E

y
+
D ∂

∂ z
huisi3ixy

E

z

+ hBxixyz �hBzixyz �h✏ixyz.

Applying the divergence theorem, we integrate by parts all the divergence (diffusive) terms in the

first three lines of the RHS of (6.6) as

D ∂
∂x

huK iyz

E

x
=

1
`
huK iyz

���
x̄+`/2

x=x̄�`/2
, (6.7a)

D ∂
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hvK ixz
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y
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, (6.7b)

D ∂
∂ z

hwK ixy

E

z
=

1
2
hwK ixy

���
1

z=�1
. (6.7c)

...

All the mean gradients along y and z (of the form (6.7b)-(6.7c)) cancel by the no-slip conditions

ui = 0 on the solid boundaries y,z =±1. The mean gradients along x (of the form (6.7a)) take the

general form (1/`)h·iyz|R�L where ·|R�L denotes the difference between the value of · on the right of

the volume (‘R’, x = x̄+ `/2) and its value on left of the volume (‘L’, x = x̄� `/2). We thus have

dK
dt

= FK +Bx �Bz �D, (6.8)

208 Dissipation, intermittency, structures: energetics analysis

which, after some manipulation, becomes

∂P

∂ t
= � ∂ (uiP)

∂xi| {z }
advection

�Ri (sinqru� cosqrw)
| {z }

buoyancy flux

+
Ri

Re Pr

h ∂
∂xi

�
(zcosq � xsinq)∂r

∂xi

 

| {z }
diffusion

�
�

cosq ∂r
∂ z

� sinq ∂r
∂x

�

| {z }
conversion to internal energy

i
. (6.12)

Volume-averaging

We define the volume-averaged potential energy similarly to (6.5) as

P(t) := hPixyz :=
1
4`

Z 1

�1

Z 1

�1

Z x̄+`/2

x̄�`/2
P dxdydz. (6.13)

By volume averaging (6.12) and using the formulas for the integration by parts in (6.7), we derive the

evolution of P as
dP
dt

= FP �Bx +Bz, (6.14)

where Bx, Bz are the internal buoyancy fluxes defined in (6.9b)-(6.9c) and we define the sum of

potential energy fluxes FP and its three distinct contributions as

FP := Fadv
P +Fdif

P +Fint
P , (6.15a)

Fadv
P := Ri

1
`

�
cosq hzruiyz|L�R � sinq hxruiyz|L�R

�
, (6.15b)

Fdif
P :=

Ri
RePr

1
`

⇣
sinq hx∂r

∂x
iyz
��
L�R � cosq hz∂r

∂x
iyz
��
L�R

⌘
, (6.15c)

Fint
P :=

Ri
RePr

⇣
� 1

`
sinqhriyz|L�R +

1
2

cosqhrixy|B�T

⌘
. (6.15d)

By analogy with the notation ·|L�R, the notation ·|B�T indicates the difference between the value of ·

at the bottom (‘B’, z =�1) and at the top (‘T’, z = 1). The potential energy flux FP is composed of

an external advective term Fadv
P , an external diffusive term Fdif

P , and an internal term Fint
P converting

internal energy I to potential energy (this conversion does not necessitate macroscopic fluid motions

and is always positive for stable stratification whether the fluid is at rest or in motion).

6.2.3 Summary: complete K and P budgets

The temporal evolutions of the volume-averaged kinetic energy (6.8) and potential energy (6.14) are

summarised in figure 6.1. The control volume V is composed of three energy reservoirs: kinetic energy

K, potential energy P and internal energy I. All energy of fluid not contained in V is represented by
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int
D

B     Bx z

Figure 6.1 Schematics of the complete energy budgets in a control volume V . The V -averaged kinetic K(t),
potential P(t) and internal I(t) energy reservoirs exchange energy with one another via internal fluxes, with
the external (to V ) energy reservoir E via boundary fluxes. Solid arrows indicate one-sided, time-irreversible
transfer, and dashed arrows indicate a priori two-sided, time-reversible transfer (until assessed and possibly
proven otherwise in § 6.3). The reversible transfer between E and I is acknowledged but indicated by a thinner
line to denote that we did not derive it explicitly and it is not central to the discussion.

an external energy reservoir denoted by E (including kinetic, potential and internal energy).

The internal reservoirs (K, P, I) exchange energy via internal fluxes: K and P exchange energy

with one another via a priori reversible buoyancy fluxes Bx, Bz, which we denote by a dashed line

(they are sign-indefinite until proven otherwise in § 6.3); K is irreversibly dissipated at rate D > 0 to

I; and I is irreversibly converted at rate Fint
P > 0 to P. We denote these irreversible transfers by solid

lines.

In addition, K, P and I also exchange energy via boundary fluxes with the exterior E. These

boundary fluxes are all a priori sign-indefinite, i.e. reversible. The boundary flux of I is necessary

to close the budget. However, since we are primarily concerned with K and P, we do not consider

explicitly the evolution of I (hence we denote it by a thinner line). We will demonstrate in the next

section that we are indeed justified in neglecting the evolution of I (i.e. it does not feed back on either

K or P).

In the next section we give physical interpretation and quantitative estimates of each of these

boundary and internal fluxes in order to simplify the picture of figure 6.1.

6.3 Physical interpretation and hierarchy of simplified budgets

In this section we aim to interpret the energy fluxes introduced in the previous section and estimate

them in the SID. In order to simplify this task, we adopt a number of assumptions from hydraulic

presFrom first principles:

6.2 Energetics analysis: volume-averaged budgets 207

where we define the sum of kinetic energy boundary fluxes FK , the volume-averaged horizontal and

vertical buoyancy flux Bx, Bz, and volume-averaged viscous dissipation D as

FK :=
1
`

⇣
huK iyz|L�R
| {z }

advection

+hupiyz|L�R
| {z }

pressure

� 2
Re

huisi1iyz|L�R
| {z }

viscous

⌘
:= Fadv

K +Fpre
K +Fvis

K , (6.9a)

Bx := hBxixyz, (6.9b)

Bz := hBzixyz, (6.9c)

D := h✏ixyz. (6.9d)

The rate of change of volume-averaged kinetic energy is therefore given by the sum of

• boundary fluxes at the left and right boundaries of V , FK , which we have split into an advective,

a pressure and a viscous contribution;

• internal fluxes within the volume V : two distinct buoyancy fluxes and a negative viscous

dissipation term. This last term acts as a source to the internal energy of the flow that we denote

by I .

The estimation and relative role of each term are discussed in § 6.2.3, after the derivation of the

evolution of the potential energy in the next section.

6.2.2 Potential energy

Instantaneous, local evolution

We define the potential energy field P as

P(xxx, t) := Ri(zcosq � xsinq)r, (6.10)

since the duct (x,y,z) coordinate system is tilted at angle q with respect to the direction of gravity.

The evolution equation for P is obtained from the density conservation equation (4.5c):

Ri(zcosq � xsinq)∂r
∂ t

=�Ri(zcosq � xsinq)∂ (rui)

∂xi
+

Ri
RePr

(zcosq � xsinq) ∂ 2r
∂xixi

, (6.11)
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Figure 6.2 Schematics and notation used for the evaluation of energy fluxes under hydraulic assumptions. The
control volume V is shaded in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface is denoted by , the neutral level z = 0 by ,
the pressure distribution on the L and R boundaries by , and p = 0 at the interface by

theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:

Simplification #1
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K

external energy

kinetic energy potential energy

internal energyV
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Figure 6.1 Schematics of the complete energy budgets in a control volume V . The V -averaged kinetic K(t),
potential P(t) and internal I(t) energy reservoirs exchange energy with one another via internal fluxes, with
the external (to V ) energy reservoir E via boundary fluxes. Solid arrows indicate one-sided, time-irreversible
transfer, and dashed arrows indicate a priori two-sided, time-reversible transfer (until assessed and possibly
proven otherwise in § 6.3). The reversible transfer between E and I is acknowledged but indicated by a thinner
line to denote that we did not derive it explicitly and it is not central to the discussion.

an external energy reservoir denoted by E (including kinetic, potential and internal energy).

The internal reservoirs (K, P, I) exchange energy via internal fluxes: K and P exchange energy

with one another via a priori reversible buoyancy fluxes Bx, Bz, which we denote by a dashed line

(they are sign-indefinite until proven otherwise in § 6.3); K is irreversibly dissipated at rate D > 0 to

I; and I is irreversibly converted at rate Fint
P > 0 to P. We denote these irreversible transfers by solid

lines.

In addition, K, P and I also exchange energy via boundary fluxes with the exterior E. These

boundary fluxes are all a priori sign-indefinite, i.e. reversible. The boundary flux of I is necessary

to close the budget. However, since we are primarily concerned with K and P, we do not consider

explicitly the evolution of I (hence we denote it by a thinner line). We will demonstrate in the next

section that we are indeed justified in neglecting the evolution of I (i.e. it does not feed back on either

K or P).

In the next section we give physical interpretation and quantitative estimates of each of these

boundary and internal fluxes in order to simplify the picture of figure 6.1.

6.3 Physical interpretation and hierarchy of simplified budgets

In this section we aim to interpret the energy fluxes introduced in the previous section and estimate

them in the SID. In order to simplify this task, we adopt a number of assumptions from hydraulic

pres

• Two-layer, near-hydrostatic 

• High Re and Pr 
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Figure 6.2 Schematics and notation used for the evaluation of energy fluxes under hydraulic assumptions. The
control volume V is shaded in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface is denoted by , the neutral level z = 0 by ,
the pressure distribution on the L and R boundaries by , and p = 0 at the interface by

theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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Figure 6.1 Schematics of the complete energy budgets in a control volume V . The V -averaged kinetic K(t),
potential P(t) and internal I(t) energy reservoirs exchange energy with one another via internal fluxes, with
the external (to V ) energy reservoir E via boundary fluxes. Solid arrows indicate one-sided, time-irreversible
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proven otherwise in § 6.3). The reversible transfer between E and I is acknowledged but indicated by a thinner
line to denote that we did not derive it explicitly and it is not central to the discussion.

an external energy reservoir denoted by E (including kinetic, potential and internal energy).

The internal reservoirs (K, P, I) exchange energy via internal fluxes: K and P exchange energy

with one another via a priori reversible buoyancy fluxes Bx, Bz, which we denote by a dashed line

(they are sign-indefinite until proven otherwise in § 6.3); K is irreversibly dissipated at rate D > 0 to

I; and I is irreversibly converted at rate Fint
P > 0 to P. We denote these irreversible transfers by solid

lines.

In addition, K, P and I also exchange energy via boundary fluxes with the exterior E. These

boundary fluxes are all a priori sign-indefinite, i.e. reversible. The boundary flux of I is necessary

to close the budget. However, since we are primarily concerned with K and P, we do not consider

explicitly the evolution of I (hence we denote it by a thinner line). We will demonstrate in the next

section that we are indeed justified in neglecting the evolution of I (i.e. it does not feed back on either

K or P).

In the next section we give physical interpretation and quantitative estimates of each of these

boundary and internal fluxes in order to simplify the picture of figure 6.1.

6.3 Physical interpretation and hierarchy of simplified budgets

In this section we aim to interpret the energy fluxes introduced in the previous section and estimate

them in the SID. In order to simplify this task, we adopt a number of assumptions from hydraulic

pres

• Two-layer, near-hydrostatic 

• High Re and Pr 
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theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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an external energy reservoir denoted by E (including kinetic, potential and internal energy).

The internal reservoirs (K, P, I) exchange energy via internal fluxes: K and P exchange energy

with one another via a priori reversible buoyancy fluxes Bx, Bz, which we denote by a dashed line

(they are sign-indefinite until proven otherwise in § 6.3); K is irreversibly dissipated at rate D > 0 to

I; and I is irreversibly converted at rate Fint
P > 0 to P. We denote these irreversible transfers by solid

lines.

In addition, K, P and I also exchange energy via boundary fluxes with the exterior E. These

boundary fluxes are all a priori sign-indefinite, i.e. reversible. The boundary flux of I is necessary

to close the budget. However, since we are primarily concerned with K and P, we do not consider

explicitly the evolution of I (hence we denote it by a thinner line). We will demonstrate in the next

section that we are indeed justified in neglecting the evolution of I (i.e. it does not feed back on either

K or P).

In the next section we give physical interpretation and quantitative estimates of each of these

boundary and internal fluxes in order to simplify the picture of figure 6.1.

6.3 Physical interpretation and hierarchy of simplified budgets

In this section we aim to interpret the energy fluxes introduced in the previous section and estimate

them in the SID. In order to simplify this task, we adopt a number of assumptions from hydraulic

pres

• Two-layer, near-hydrostatic 

• High Re and Pr 
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theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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• Two-layer, near-hydrostatic 

• High Re and Pr 
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Figure 6: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.

hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).

• the conversion of I to P :
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.

hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).

• the conversion of I to P :
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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Figure 6.2 Schematics and notation used for the evaluation of energy fluxes under hydraulic assumptions. The
control volume V is shaded in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface is denoted by , the neutral level z = 0 by ,
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theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:

Simplification #2

• Two-layer, near-hydrostatic 

• High Re and Pr 

• ‘Forced’ flow !  θ > α
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Figure 6: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.

hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).

• the conversion of I to P :
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:

Simplification #2

• Two-layer, near-hydrostatic 

• High Re and Pr 

• ‘Forced’ flow !  θ > α

  α
= tan−1(H/L)
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Figure 6: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.

hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:

Simplification #2

• Two-layer, near-hydrostatic 

• High Re and Pr 

• ‘Forced’ flow !  θ > α

  α
= tan−1(H/L)



Adrien Lefauve (DAMTP, Cambridge)  11

210 Dissipation, intermittency, structures: energetics analysis

η(x)u 1L

u 2R
V

ηL

ηR
u 1R

u 2L

p (z)z

              x 

L
p (z)

R

Figure 6.2 Schematics and notation used for the evaluation of energy fluxes under hydraulic assumptions. The
control volume V is shaded in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface is denoted by , the neutral level z = 0 by ,
the pressure distribution on the L and R boundaries by , and p = 0 at the interface by

theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:

Simplification #2

• Two-layer, near-hydrostatic 

• High Re and Pr 

• ‘Forced’ flow !  θ > α

  α

Sustained stratified shear flows 19

K

V

E

P

I

Φ     K

adv ΦP
adv

D

B     

B

x

z

K

V

E

P

I

ΦP
adv

D

B     

B

x

(a)   Lazy flows    (b)   Forced flows    

z

Figure 6: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.

hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected

= tan−1(H/L)
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( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a
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the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
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hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).

• the conversion of I to P :

�int
P

=
1

4ReSc

n
� ⌘L � ⌘R

`
✓

| {z }
> 0 and ⌧ 1

+1
o
⇡ 1

4Re Sc
, (3.28)

since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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theory, essentially that the flow is two-layer, hydrostatic, with uniform velocities, etc. We then

gradually relax these assumptions to build a hierarchy of simplified budgets.

6.3.1 Interpretation and estimation of energy fluxes

As sketched in figure 6.2, we assume that the left (L) boundary of the volume V (shaded in grey) has

a lower layer velocity u1L > 0, an upper layer velocity u2L < 0, and that the right (R) boundary of V

has a lower layer velocity u1R > 0, and an upper layer velocity u2R < 0. The interface position h(x)

( ) takes the respective values of hL and hR (in the case where V is the whole duct, hL =�hR = h⇤

and as seen in Chapter 5, figure 5.4a). In agreement with hydraulic theory, we further assume a

uniform streamwise velocity profile in each layer, and a hydrostatic pressure distribution where

the reference pressure is 0 all along the interface p(x,z = h(x)) = 0 (subtracting the hydrostatic

streamwise pressure gradient due to sinq ) and the local gradient is ∂z p = Ricosqr (where in the

lower layer r1 = 1, in the upper layer r2 =�1). This results in p(x,z) = Ri cosq{h(x)� z} (shown

by in figure 6.2).

This setup and set of assumptions essentially describe flows in the IGH balance, using the

classification introduced in Chapter 1 (see § 1.3 and figures 1.5-1.6). In other words, we assume they

are inertial (I), forced both by the gravitational (G) tilt q > 0� and the hydrostatic pressure gradient

(H). We neglect viscous dissipation temporarily (required to estimate D), but will introduce it in due

course.

Boundary fluxes of K

We estimate the boundary fluxes in the IGH balance as follows:
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Figure 6: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.

hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre

K
, �vis

K
, �dif

P
, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre
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, �dif
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and Pr considered in this paper). The resulting simplified budget for general SID flows,
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In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
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In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv
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> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv
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. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv
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in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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Figure 6: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.
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Figure 9: Energy budgets of forced flows using theK = K2d+K3d decomposition, refining
the budgets of figure 6(b). These budgets in (a) and (b) only di↵er in the hypothetical
magnitude of the fluxes (with respect to the rescaled time t⇤), represented by the thickness
of the arrows: (a) at low ✓Re, the power throughput is small and dissipation by hS2dit
is su�cient. (b) At high ✓Re scenario: the power throughput is high and transfer to K3d

by hT it and the associated dissipation by hS3dit must take over.

in LPZCDL18. To understand the L ! H transition, we formulate two distinct hypotheses
regarding the energetical importance of CHWs:

(a) either the distortion of the two-dimensional flow u2d to yield higher
@zu2d, @yu2d and hS2dit ‘incidentally’ renders the flow profile u2d, ⇢2d susceptible
to the confined Holmboe instability (CHI) and triggers a transition to a weakly
three-dimensional flow state, whose dissipation hS3dit is insignificant (panel (a)).
In other words additional dissipation is achieved primarily by u2d and not by the
three-dimensional CHWs (which are simply a by-product of the changes in u2d);
(b) or the distortion of u2d is no longer su�cient to reach the target dissipation:
no two-dimensional solutions exist with the required hS2dit and the flow must

bifurcate to a three-dimensional state with significant transfer hT it and additional
dissipation hSit � hS2dit (panel (b)). In other words additional dissipation is
achieved primarily by CHWs rather than by the deformation of u2d.

Experimental data in the next section will allow us to decide which hypothesis is true.
(iii) for ✓Re > 50 (I regime), the power throughput becomes large > 3.12 and we expect

the transfer hT it and three-dimensional dissipation hS3dit to be important to close the
budgets (panel (b)).
The H ! I transition may be explained by two hypotheses which are respectively
consistent with the two hypotheses above:

(a) if the CHW is energetically insignificant, its amplitude is presumably not
influenced by ✓Re. Since it is the two-dimensional flow u2d that responds to ✓Re,
we expect the H ! I transition to be related to an instability of this base flow;
(b) if the CHW is energetically significant in providing three-dimensional dissipa-
tion following ✓Re, its amplitude must be set by ✓Re and we thus expect the H ! I

transition to be related to a ‘secondary’ instability of this wave state, perhaps due
to a critical (nonlinear) amplitude.

(iv) for ✓Re > 100 (power throughput > 6.25) the transition to the T regime has
a simple qualitative explanation: a fully turbulent flow with high, sustained values of

Hypothesis: regime transitions are caused by   following a plateau in !  and scale with  S3d S2d θ Re
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214 Dissipation, intermittency, structures: energetics analysis

• Fint
P (6.15d): the conversion of internal energy is straightforward since hriyz = h (by definition

of h , assuming collocation of the velocity and density interfaces) and hrixy|B�T = 2:

Fint
P =

Ri
RePr

n
� sinq hL �hR

`| {z }
>0 and ⌧cosq

+cosq
o
⇡ Ri

Re Pr
cosq , (6.25)

which given the Re used, is always negligible compared to the advective or buoyancy fluxes for

any slightly positive angles (tanq � (QRePr)�1 ⇡ 0).

• D : under the assumptions of hydraulic theory, D = 0; however in reality D > 0 but is unknown

(it will only be possible to estimate it in a particular simplified budget).

Summary

To summarise, we established that Fpre
K = 0, and that Fvis

K , Fdiff
P , Fint

P can safely be neglected for all

flows in an inertia-dominated balance of interest to us (i.e. not labelled in white in figures 1.5-1.6).

Next, we use the physical interpretation and estimates of the energy fluxes to build the energy budget

of any control volume V under a hierarchy of decreasingly complex physical balances in figure 6.3.

We first consider the full IGHV balance (panel a), in which inertia (‘I’), gravitational forcing (‘G’),

hydrostatic forcing (‘H’) and viscosity (‘V’) are all in balance (see § 1.3 for the discussion). We

then consider the simplified IHV balance (panel b) and IGV balance (panel c) in which one of the

sources of forcing is dominant (i.e. the tilt angle q is either very small or very large compared to the

geometric slope of the duct j := tan�1 A�1). We eventually simplify them to the ‘extreme’ IH, IGH,

and IG balances (panels d-f ) where viscous effects are ignored altogether (resulting in irrelevant or

ill-posed budgets).

6.3.2 IGHV budget

The budget of the most general IGHV balance (in which viscous effects are as important as inertial,

gravitational and hydrostatic effects) includes all remaining non-zero and non-negligible fluxes

Fadv
K < 0, Fadv

P > 0, Bu > 0, Bw and include the hitherto unknown, but positive dissipation D > 0

(figure 6.3a).

In this balance, as well as in all the following balances, the only source of energy in V is the

advective flux of P from the exterior at rate Fadv
P . In the IGHV (and all ‘GH’ balances), this flux is

composed of both a ‘G’ contribution (in sinq ) and an ‘H’ contribution (in cosq ), see (6.20). This flux

(power) of potential energy is then converted to kinetic energy at a rate Bx (in sinq , see (6.23)). If the

mean vertical buoyancy flux is negative (i.e. on average, dense fluid is transported down and buoyant
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Figure 7: Scaling of regime transitions. Colour symbols: regime diagram of figure 2 plotted
in the same ✓ �Re plane but in log-log scale. Families of thick dotted and dashed lines:
approximate regime transition lines with respective ✓Re2 = const. and ✓Re = const.
scalings. Vertical grey shading at ✓ = ↵: boundary between lazy and forced flows. Thin
solid black contours: quadratic form fitting of 161 mass flux measurements of hQmit. Six
contours are shown in the range 0� 0.5 and they have been continued beyond the range
covered by the data points used (note that no 0.6 contour exists here).

hQmit ⇡ 0.5. These two observations, given the fact that Qm ⇡ Q (except for the most
turbulent data), are consistent with the theoretical predictions of § 3.3.1.
(ii) In lazy flows, the regime data closely follow a reg ⇠ ✓Re2 scaling (dotted

lines). The L ! H, H ! I, and I ! T transitions curves are respectively
✓Re2 = 6⇥ 103, 6⇥ 104, 2⇥ 105. This empirical ‘lazy flow scaling’ is not consistent
with the theoretical ‘forced flow scaling’ reg = reg(✓Re) predicted by the corollary
(3.34), which is not surprising given the di↵erent energetics of lazy flows. This ✓Re2

scaling is however consistent with the scaling proposed by ML14 (see § 2.3.2 and (2.14)),
but it is not presently understood.
(iii) In forced flows, the regime data closely follow a reg ⇠ ✓Re scaling (dashed lines).

The L ! H, H ! I, and I ! T transitions are respectively ✓Re = 20, 50, 100. This
empirical ‘forced flow scaling’ is consistent with the theoretical ‘forced flow scaling’ reg =
reg(✓Re) predicted by the corollary (3.34) (and inconsistent with the scaling of ML14).

We have thus confirmed one of the features underlying the distinction between lazy
and forced flows (Q ⇡ Qm < 0.5 vs ⇡ 0.5 respectively), as well as the regime transitions
scaling in forced flows reg = reg(✓Re) (corollary (3.34)), but showed that lazy flows
followed a di↵erent (and still unexplained) scaling.

In order to confirm the hypothesis (3.32) underlying the corollary, and thus to provide
a physical basis for our understanding of regime transitions, we need to validate the
energetics framework of § 3, and in particular, we need direct evidence that the energy
budget of forced flows indeed follows the simplified model in figure 6(b). This is the
subject of the next section.
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any slightly positive angles (tanq � (QRePr)�1 ⇡ 0).

• D : under the assumptions of hydraulic theory, D = 0; however in reality D > 0 but is unknown

(it will only be possible to estimate it in a particular simplified budget).
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We first consider the full IGHV balance (panel a), in which inertia (‘I’), gravitational forcing (‘G’),

hydrostatic forcing (‘H’) and viscosity (‘V’) are all in balance (see § 1.3 for the discussion). We

then consider the simplified IHV balance (panel b) and IGV balance (panel c) in which one of the

sources of forcing is dominant (i.e. the tilt angle q is either very small or very large compared to the

geometric slope of the duct j := tan�1 A�1). We eventually simplify them to the ‘extreme’ IH, IGH,

and IG balances (panels d-f ) where viscous effects are ignored altogether (resulting in irrelevant or

ill-posed budgets).

6.3.2 IGHV budget

The budget of the most general IGHV balance (in which viscous effects are as important as inertial,

gravitational and hydrostatic effects) includes all remaining non-zero and non-negligible fluxes

Fadv
K < 0, Fadv

P > 0, Bu > 0, Bw and include the hitherto unknown, but positive dissipation D > 0

(figure 6.3a).

In this balance, as well as in all the following balances, the only source of energy in V is the

advective flux of P from the exterior at rate Fadv
P . In the IGHV (and all ‘GH’ balances), this flux is

composed of both a ‘G’ contribution (in sinq ) and an ‘H’ contribution (in cosq ), see (6.20). This flux

(power) of potential energy is then converted to kinetic energy at a rate Bx (in sinq , see (6.23)). If the

mean vertical buoyancy flux is negative (i.e. on average, dense fluid is transported down and buoyant
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in the same ✓ �Re plane but in log-log scale. Families of thick dotted and dashed lines:
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contours are shown in the range 0� 0.5 and they have been continued beyond the range
covered by the data points used (note that no 0.6 contour exists here).

hQmit ⇡ 0.5. These two observations, given the fact that Qm ⇡ Q (except for the most
turbulent data), are consistent with the theoretical predictions of § 3.3.1.
(ii) In lazy flows, the regime data closely follow a reg ⇠ ✓Re2 scaling (dotted

lines). The L ! H, H ! I, and I ! T transitions curves are respectively
✓Re2 = 6⇥ 103, 6⇥ 104, 2⇥ 105. This empirical ‘lazy flow scaling’ is not consistent
with the theoretical ‘forced flow scaling’ reg = reg(✓Re) predicted by the corollary
(3.34), which is not surprising given the di↵erent energetics of lazy flows. This ✓Re2

scaling is however consistent with the scaling proposed by ML14 (see § 2.3.2 and (2.14)),
but it is not presently understood.
(iii) In forced flows, the regime data closely follow a reg ⇠ ✓Re scaling (dashed lines).

The L ! H, H ! I, and I ! T transitions are respectively ✓Re = 20, 50, 100. This
empirical ‘forced flow scaling’ is consistent with the theoretical ‘forced flow scaling’ reg =
reg(✓Re) predicted by the corollary (3.34) (and inconsistent with the scaling of ML14).

We have thus confirmed one of the features underlying the distinction between lazy
and forced flows (Q ⇡ Qm < 0.5 vs ⇡ 0.5 respectively), as well as the regime transitions
scaling in forced flows reg = reg(✓Re) (corollary (3.34)), but showed that lazy flows
followed a di↵erent (and still unexplained) scaling.

In order to confirm the hypothesis (3.32) underlying the corollary, and thus to provide
a physical basis for our understanding of regime transitions, we need to validate the
energetics framework of § 3, and in particular, we need direct evidence that the energy
budget of forced flows indeed follows the simplified model in figure 6(b). This is the
subject of the next section.
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hQmit ⇡ 0.5. These two observations, given the fact that Qm ⇡ Q (except for the most
turbulent data), are consistent with the theoretical predictions of § 3.3.1.
(ii) In lazy flows, the regime data closely follow a reg ⇠ ✓Re2 scaling (dotted

lines). The L ! H, H ! I, and I ! T transitions curves are respectively
✓Re2 = 6⇥ 103, 6⇥ 104, 2⇥ 105. This empirical ‘lazy flow scaling’ is not consistent
with the theoretical ‘forced flow scaling’ reg = reg(✓Re) predicted by the corollary
(3.34), which is not surprising given the di↵erent energetics of lazy flows. This ✓Re2

scaling is however consistent with the scaling proposed by ML14 (see § 2.3.2 and (2.14)),
but it is not presently understood.
(iii) In forced flows, the regime data closely follow a reg ⇠ ✓Re scaling (dashed lines).

The L ! H, H ! I, and I ! T transitions are respectively ✓Re = 20, 50, 100. This
empirical ‘forced flow scaling’ is consistent with the theoretical ‘forced flow scaling’ reg =
reg(✓Re) predicted by the corollary (3.34) (and inconsistent with the scaling of ML14).

We have thus confirmed one of the features underlying the distinction between lazy
and forced flows (Q ⇡ Qm < 0.5 vs ⇡ 0.5 respectively), as well as the regime transitions
scaling in forced flows reg = reg(✓Re) (corollary (3.34)), but showed that lazy flows
followed a di↵erent (and still unexplained) scaling.

In order to confirm the hypothesis (3.32) underlying the corollary, and thus to provide
a physical basis for our understanding of regime transitions, we need to validate the
energetics framework of § 3, and in particular, we need direct evidence that the energy
budget of forced flows indeed follows the simplified model in figure 6(b). This is the
subject of the next section.

Adrien Lefauve (DAMTP, Cambridge)
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Figure 6: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 3 were estimated using the two-layer hydraulic model of figure 4, which
led to two levels of simplifications. (a) Simplified budget for lazy flows, i.e. any general
stratified inclined duct flow; (b) Further simplified budget for the special case of forced
flows.

hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).
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since h⇢iyz = ⌘, by definition of ⌘, assuming collocation of the velocity and density
interfaces, and h⇢ixy|B�T = 1� (�1) = 2. Given the large Re and Sc investigated here,
we will neglected it.

• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When
relaxing these assumptions, as we will do shortly, D > 0 but is unknown. We will show
in § 3.4 how it can be deduced in the simplified budget of forced flows.

3.3.3. Summary, schematics and simplified budget

A first level of simplification of the full budget presented in figure 3 consists in
neglecting the boundary fluxes �pre
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, �vis
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, �dif
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, and �int

P
(as argued above, for the Re

and Pr considered in this paper). The resulting simplified budget for general SID flows,
i.e. for lazy flows, is sketched in figure 6(a).

In lazy flows (figure 6(a)), all the energy in V is supplied by the positive advective flux
of P (�adv

P
> 0) composed of a hydrostatic and a gravitational contributions (represented

by a double arrow). This energy is transferred to K by the horizontal buoyancy flux
(Bx > 0), equal to the gravitational contribution of �adv

P
. We previously argued that

the vertical buoyancy flux Bz was, in general, sign-indefinite, depending on the level
of vertical motions in the flow. However it becomes clear that, in order to close the
budgets of lazy flows over su�ciently long times, Bz must be a sink to P and a source
to K (Bz < 0), and it must equal the hydrostatic contribution of �adv

P
in magnitude. To

balance these two distinct sources, K has two distinct sinks: the advective flux �adv
K

< 0,
and the viscous dissipation �D < 0. (The internal energy reservoir I has a energy source
D > 0, which in steady state, must be balanced by a negative advective flux.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 6(b). We showed in the previous section that in a ‘periodic’ volume V , expected
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