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Abstract

The modeling of active suspensions, or suspensions of self-propelling particles such as swimming mi-

croorganisms remains a great challenge despite their ubiquity in biological systems. The long-ranged

fluid-mediated interactions between suspended particles in the low-Reynolds-number regime are known

to give rise to collective motion and large-scale spatiotemporal coherent patterns. The mechanisms be-

hind the emergence of collective dynamics and self-organization from individual interactions has received

increasing attention in the past few years, and could provide valuable insight into the behavior of nonequi-

librium dissipative systems. In this work, we use theory and numerical simulation to study the behavior

of confined active suspensions, with emphasis on fore-aft asymmetric swimmers.

Continuum kinetic theory and numerical simulations demonstrated that bulk suspensions of tail-

actuated swimmers are subject to a generic long-wavelength instability, suggesting that systems larger

than a threshold size are prone to mesoscale orientational order in the form of bend modes. However, ac-

cording to recent evidence, the nature of hydrodynamic interactions radically changes under confinement

between two rigid plates, a situation of particular relevance for bacterial swarms on rigid boundaries or

in a thin wall-bounded film. The resulting interactions are weaker than in unconfined geometries and it

is unknown whether they also give rise to collective motion.

By means of a stability analysis on a continuum kinetic model coupled to the Stokes flow equations, we

extend existing linear theories and show that bulk suspensions of confined large-head swimmers experience

a similar generic instability characterized by propagating large-scale polarized waves. The predicted

features of this instability are then captured using direct particle simulations and linear results for the

wavenumber dependence are compared. We then gain insight into the surprising long-time dynamics and

pattern formation of large-heads and shed light on the underlying mechanisms. Nonlinear simulations

further reveal that in spite of being linearly stable, suspensions of large-tail swimmers are also prone to

a long-wavelength instability, driving fascinating quasi-periodic vortical motions above a critical system

size. Finally, we show using a quasi-one-dimensional model that self-propelled organisms in a narrow

channel subject to a stabilizing external flow obey a traffic flow equation. The predicted traffic jam

behavior is then successfully observed in simulations and we explain why it contrasts with an apparently

similar result recently reported in passive suspensions.
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Chapter 1

Introduction

This chapter starts with a brief introduction to the field of active suspensions and highlights the relevance

of the following work in this context. We then proceed to present the model upon which this work relies

for the description of dynamics of confined active suspensions.

1.1 Active suspensions

The omnipresence of microorganisms in the biosphere and their role in phenomena as fundamental as

pathogenic infection, digestion, reproduction or CO2 capture and mixing in the oceans motivates the

understanding of their behavior [1]. In the past decades, efforts have been made to understand the

swimming mechanisms of microorganisms, which, unlike most familiar macroscopic organisms, evolve in

viscous fluid environments where inertia is negligible. In this low-Reynolds-number world, the disturbance

flow created by a moving particle has often a slow spatial decay, which allows for strong fluid-mediated

interactions with other neighboring particles in large colonies. These so called living fluids or active

suspensions, referring to the active energy input from their suspended microstructure, have attracted

many scientific communities, from biology and physics to engineering and applied mathematics [2]. The

fascinating phenomena that have already been studied include enhanced tracer diffusion and swimming

speeds, large-scale chaotic and vortical flows and giant density fluctuations, even in absence of external

forcing. Since such unusual and complex fluid motions are typical of high-Reynolds-number turbulence,

they are often referred to as bacterial turbulence.

Among several theoretical frameworks proposed to elucidate the underlying mechanisms, the simple

kinetic model developed by Saintillan and Shelley [3, 4], based on a continuous probability distribution

function coupled with the Stokes equation, has proven particularly successful in understanding various

phenomena that we will outline next. Their first study addressed the stability of a three dimensional

homogeneous suspension and revealed that isotropic suspensions of tail-actuated swimmers1 were unstable

to long-wavelength perturbations. Specifically, this suggests that instability may occur in systems whose

1This common type of swimmers achieve swimming by pushing at the rear of their body and are commonly refered to

as pushers, as opposed to head-actuated organisms called pullers.
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linear size exceeds a given threshold inversely proportional to the swimmers’ concentration [3, 4]. This

behavior has then been successfully captured in numerical simulations, based on the integration of the

distribution function coupled with the fluid flow [3, 4] as well as slender body theory [5] and insight

into nonlinearities has been gained, showing long-time dynamics characterized by strong concentration

fluctuations, enhanced mixing as well as quasi-periodic formation and break-down of complex structures.

To account for the existence of background flows commonly observed in Nature, further theory and

simulations by Alizadeh Pahlavan and Saintillan suggested that an external shear flow has a stabilizing

effect on the suspension by controlling the orientation of particles [7]. Saintillan then extended this

model to analyze the effective rheology of active suspensions [8, 9], where pushers have been surprisingly

found to decrease the effective fluid viscosity, confirming experimental findings [10]. Chemotaxis, or

the interaction of microorganisms with chemical fields (such as in a thin film of bacterial suspension

surrounded by oxygen) has also been studied by coupling the previous model to the oxygen field and

modeling faithfully the complex response of individual bacteria to oxygen concentrations. Simulations

by Ezhilan, Alizadeh Pahlavan and Saintillan [11] confirmed observations [12] of a transition from 2D

behavior to 3D chaotic patterns as the film thickness increases, significantly enhancing oxygen mixing

from free surfaces to the bulk of the film, with obvious benefits to the bacteria. Eventually, an extension

of this kinetic model has been recently used both theoretically and numerically by Ezhilan, Shelley and

Saintillan [13] to investigate the stability and nonlinear dynamics of semi-concentrated suspensions, taking

into account steric interactions and reporting novel dynamics experimentally reported in dense bacterial

swarms [14].

Whereas these efforts to extend the original model were successful in the fundamental understanding of

various phenomena, improvements to capture even more complex effects will be needed to quantitatively

account for many experimental results [1]. Among other interests, the effects of high bacterial concen-

trations are regarded as particularly challenging for a continuum model, as well as unsteady swimming

actuation, which has until then been neglected despite evidence of its significant effects [15]. Eventually,

increasing interest is shown for the influence of confinement. By assuming periodic boundary conditions,

most calculations and simulations capture the bulk behavior without examining the dominant and dra-

matic effect that boundaries might have in confined geometries. The following work is precisely aimed

at gaining insight into the effect of rigid boundaries on the stability and nonlinear dynamics of quasi-2D

suspensions of self-propelled organisms. Confined suspensions have been studied in the past few years,

mainly in the context of droplet emulsions (see a review by Beatus, Bar-Ziv and Tlusty [16]), which

although they are not self-propelled particles, share similarities with active suspensions. In this respect,

results including the propagation of Burgers shock waves explained as a genuine effect of confinement

of advected droplets [17, 18, 19] are encouraging. More generally, the study of 2D suspensions seems

very promising to gain insight into the complex dynamics leading to collective phenomena and pattern

formation in non-equilibrium systems, where governing principles are still puzzling theorists [16]. Active

suspensions are a good example of dissipative many-body systems with strong interactions, which are

omnipresent in Nature. Moreover, they exhibit rich phenomena while being theoretically tractable owing

to the linearity of the viscous flow equations. As we shall see, some theoretical difficulties are further

avoided by the two-dimensionality of confined suspensions, which makes them exceptionally well-suited
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to study the basic principles of many-body physics with long-ranged interactions [16].

In this perspective, this work hopes to elucidate some features of the dynamics of self-propelled

particles lacking fore-aft symmetry, as a general model for biological swimmers, embedded in strongly and

rigidly confined geometries such as in a thin gap between two plates. We will make use of a combination

of theory and numerical simulation and will heavily rely on the kinetic model mentionned above and on

a recent theoretical model for the interactions and mobility of confined swimmers by Brotto et al. [20].

1.2 Hydrodynamic interactions in confined geometries

In this section, we recall the basics of the disturbance Stokes flow generated by a typical biological

swimmer in unconfined geometries and show how interactions are modified in a thin wall-bounded film,

where the film thickness h is comparable with the particle height.

In the low-Reynolds-numbers realm, microorganisms exhibit numerous swimming strategies which

have in common to rely on non-reciprocal shape deformation, as required by the Purcell scallop theorem

[21]. Fig. 1.1 shows how microorganisms exert a net thrust Fp on the surrounding fluid, actuating their

flagella in a non-reciprocal fashion. As gravitational effects are neglected (fluid and swimmer densities

are often similar), an equal and opposite drag Fd = −Fp must be exerted, typically distributed on parts

of the body which do not contribute to propulsion [1]. As the application points of these forces are

separated by a finite distance (about the organism size) the effect on the fluid is essentially that of a

force dipole, whose sign differs for tail-actuated organisms, called pushers (Fig. 1.1a) and head-actuated

ones, or pullers (Fig. 1.1b) [1]. Approximating the disturbance flow resulting from the complex force

FIG. 1.1: Self-propulsion of (a) a tail-actuated microorganism (e.g. a bacterium) (b) a head-actuated microor-

ganism (e.g. a microalga). These mechanisms result in force dipoles of opposite sign. Adapted from [1].

distribution on the swimmer as a force dipole singularity (or Stokes doublet) with 1/r2 spatial decay

significantly simplifies the mobility problem but only holds in the limit of large inter-particle distance

compared to the particle size [22]. This constitutes the first reason why such models heavily rely on the

assumption that the suspension is dilute. As a swimmer moves through the fluid, it not only perturbs

momentum density, but also mass density as a result of non-penetration at its boundaries. In the dilute

limit, this perturbation is well approximated by a source dipole (also called source doublet or potential
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dipole), with spatial decay in 1/r3, a higher-order contribution which we therefore neglect. Fig. 1.2 shows

the differences between the flow induced by a force dipole (Fig. 1.2a) and a source dipole (Fig. 1.2b).

As the hydrodynamic interactions decay with an exponent of two, less than the dimensionality of the

system, unconfined suspensions fall into the category of systems with strong long-ranged interactions.

FIG. 1.2: Streamlines due to (a) a 3D force dipole (Stokes doublet), which decays as 1/r2 (b) a 3D source doublet

(potential dipole), which decays as 1/r3. Arrow length indicates flow intensity. Adapted from [23].

By constrast, quasi-2D systems are characterized by two rigid parallel boundaries breaking the trans-

lational symmetry of the fluid along the normal direction z, and transverse momentum can no longer be

conserved. This leak can be seen in the no-slip boundary condition at the plates, resulting in a Poiseuille

flow with finite momentum flux ∂u/∂z into the confining surfaces [22]. It has been shown that fluid flow

components normal to the plates resulting from a force monopole (Stokeslet) parallel to them decay ex-

ponentially in r/h (i.e. transverse momentum is not conserved over distances larger that h), and that the

far field behavior was that of a 2D source dipole in the (x, y) plane [24]. Applied to the confined Stokes

doublet from a self-propelled organism, this suggests a far-field that looks like a potential quadrupole with

1/r3 spatial decay. In contrast with momentum, since non-penetration at the boundaries must still hold,

mass is obviously conserved under confinement. The source dipole term introduced in 3D to account for

the finite size of swimmers is therefore still relevant. In the dilute limite, and when the film thickness is

about the particle size, we neglect 3D effects due to the finite height of the particles and regard the flow

as being essentially 2D. Far from a particle, the parabolic Poiseuille flow variables may thus be described

by their averages on the (x, y) plane, and we use the classical result that the velocity is potential [25]:

u(r) = − h2

12η
∇Π(r), (1.1)

where Π(r) is the pressure at r = (x, y) and η the dynamic viscosity. Specifically, the 2D source dipole

term that we seek is the solution of Eq. (1.1) and the modified incompressibility relation [20]

∇ · u(r) = −σ · ∇δ(r−R(t)), (1.2)

for a swimmer at R(t) with dipole moment σ = σ[Ṙ(t)− u(R(t))] resulting from the relative velocity of

the swimmer with the background flow. Here σ scales as the particle area, u is the velocity in absence of

the particle and δ the delta Dirac function. This is solved by [20]

ud(r|R(t),σ) =
1

2π|r′|2
(2r̂′r̂′ − I) · σ, (1.3)
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where r′ = r −R(t) and r̂′ = r′/|r′|. As expected, the dipolar solution ud brings a 1/r2 contribution,

which is dominant compared to the potential quadrupole term in 1/r3 resulting from the confined Stokes

doublet. Note that the flow generated by confined self-propelled particles has surprisingly the same

angular dependence as the one resulting from confined but passively driven particles (force monopoles).

To summarize, confinement between rigid surfaces suppresses the force dipole contribution (from 1/r2

to 1/r3), while amplifying the source dipole one (from 1/r3 to 1/r2), radically changing the nature of

the far-field interactions. In particular, the distinction between pushers and pullers becomes irrelevant

and the angular symmetry of the singularity dominant under confinement (Fig. 1.2b) strongly contrasts

with the one governing interactions in unbounded geometries (Fig. 1.2a). Note that the 1/r2 spatial

decay remains unchanged, unlike the dimensionality of the system. Confined suspensions are therefore

a borderline case between strong and weak interacting systems for which large-scale correlated motions

typical of strong interacting 3D suspensions might disappear.

1.3 Individual motion of confined anisotropic polar swimmers

Now that we derived the interactions between self-propelled particles in rigidly confined geometries, we

shall examine their response to these flows. The objective of this section is to set the equations of motion

of a single swimmer in an arbitrary flow field.

We focus our attention to anisotropic swimmers, for which an orientation can be defined. In addition

to being anisotropic, most biological swimmers are polar, that is, they have no front-back symmetry. We

shall therefore develop a general model that accounts for this interesting characteristic. Let us consider

a single anisotropic polar swimmer with center of mass position R(t) and orientation p(t) (|p|2 = 1),

swimming with velocity vs along p. When confined in an arbitrary flow u, the equations governing its

motion have been very recently proposed by Brotto et al. [20]:

Ṙ = vs p + µ⊥ (I− pp) · u + µ‖ pp · u (1.4a)

ṗ = ν (I− pp) · u + ν′ (I− pp) · ∇u · p (1.4b)

where µ‖ (resp. µ⊥) denotes the longitudinal (resp. transverse) mobility coefficient and ν (resp. ν′)

the polar (resp. anisotropic) rotational mobility coefficient. Reorientation of anisotropic particles due

to the flow gradient at a rate 0 < ν′ < 1 corresponds to the well-known Jeffery’s equation, where

ν′ = (A2 − 1)/(A2 + 1) < 1 for an ellipsoid particle of aspect ratio A [4]. However, Brotto et al. recently

showed that in stark contrast to unconfined geometries, rigidly confined anisotopic swimmers undergoing

lubricated friction with rigid walls are subject to anisotropic mobility (µ⊥ 6= µ‖ and µ⊥, µ‖ 6= 1) and

polar ones can in addition reorient because of the flow itself (ν 6= 0) [20]. To gain insight into this new

dynamics and the effects of confinement, they derived analytical expressions for these coefficients using

the following microscopic dumbbell model.

As sketched in Fig. 1.3, we consider a particle composed of two disks of radius b1 (resp. b2) located

at R1 (resp. R2) connected by a frictionless rigid rod of length a� b1, b2. Because of lubrication, each
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FIG. 1.3: Microscopic dumbbell as a simple model of anisotropic polar swimmer

disk is transported at a velocity Ṙi = µiu(Ri) with a mobility coefficient 0 < µi < 1 depending on bi.

Moreover, both disks have a different drag coefficients, and thus respond differently to an external force:

Ṙi = αiF (where α−1i is the drag coefficient). Using this notation, we define the center of drag of the

swimmer as R = (α2R1 + α1R2)/(α1 + α2). The motion of each disk i becomes a mobility problem and

results from the superposition of:

• independent self-propulsion at a velocity vsp,

• passive advection by the external flow (due to other particles) u0(Ri) ≈ u0(R)+(Ri−R) ·∇u0(R)

using a first-order Taylor expansion around the center of drag (with R2 −R1 = ap),

• advection by the dipolar flow generated by the other disk ud(Ri|Rj ,σj), with σj ≈ 2πb2j (vsp +

µju
0(Rj)− u0(Rj)) ,

• drag by the rod tension T which enforces the inextensibility condition p · (Ṙ2 − Ṙ1) = 0 .

We derived Ṙ, ṗ following these steps (which can be regarded as an elementary method of reflection) and

obtained for µ⊥, µ‖, ν, ν′ slightly different expressions than Brotto et al.:

µ⊥ =
1

α1 + α2

[
α1µ2

(
1 + (1− µ1)

b21
a2

)
+ α2µ1

(
1 + (1− µ2)

b22
a2

)]
, (1.5a)

µ‖ =
1

α1 + α2

[
α1µ2

(
1− (1− µ1)

b21
a2

)
+ α2µ1

(
1− (1− µ2)

b22
a2

)]
, (1.5b)

ν =
1

a

[
µ2

(
1 + (1− µ1)

b21
a2

)
− µ1

(
1 + (1− µ2)

b22
a2

)]
, (1.5c)

ν′ =
1

α1 + α2
(α1µ1 + α2µ2), (1.5d)

but arrived to the exact same conclusions:

• µ⊥, µ‖, ν′ depend only on the anisotropy (they remain equal after a tail-head permutation) whereas

ν is solely due to polarity,

• 0 < µ‖ < µ⊥ < 1 : the transverse mobility is always greater than the longitudinal one,

• since the µi are decreasing functions of bi, ν > 0 refers to large-tail swimmers (for which b2 > b1)

whereas ν < 0 refers to large-head swimmers (b1 > b2).
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Considering Eqs. (1.5a), (1.5b) it is natural to define the following coefficients, which will prove to be

more relevant in the following:

µ̄ =
µ⊥ + µ‖

2
µ̃ = µ⊥ − µ‖, (1.6)

where 0 < µ̄ < 1 is the average mobility and 0 < µ̃ < 1 quantifies the anisotropy of the swimmer.

These derivations prove that symmetry-breaking and momentum absorption due to confinement not

only dramatically influences the nature of interactions, but also the response of particles to them. We

shall see that the new orientational dynamics characterized by ν leads to fascinating phenomena in which

the difference between large-head and large-tail swimmers will become central.

1.4 Continuum description and kinetic model

In this section, we briefly introduce the kinetic model first proposed by Saintillan and Shelley [3, 4] to

investigate collective dynamics in active suspensions.

The configuration of particles is described by a continuous distribution function Ψ(x,p, t), representing

the probability of finding a particle located at position x with orientation p at time t (see Fig. 1.4a).

The first three moments of Ψ on the unit circle are a very convenient way to describe the general phase

properties of the suspension:

• c(x, t) =
∫

Ψ(x,p, t) dp yields the local concentration or number of particles per unit area.

• P(x, t) = 1
c(x,t)

∫
pΨ(x,p, t) dp is the local polarization and describes the mean direction of align-

ment of particles. Note that P = 0 for an isotropic distribution ∂Ψ/∂p = 0.

• Q(x, t) = 1
c(x,t)

∫
(pp − 1

2I)Ψ(x,p, t) dp represents the local nematic orientation tensor. This

second-order symmetric tensor is commonly used in condensed matter physics to describe at least

two different types of deformation, in particular in liquid crystals. Qxx = 1
2c

∫ π
−π Ψ cos 2θ dθ quan-

tifies splay deformations (Fig. 1.4b) whereas Qxy = 1
2c

∫ π
−π Ψ sin 2θ dθ accounts for bend nematic

alignment (Fig. 1.4c).2 It is by definition traceless, such that the isotropic state conveniently cor-

responds to Q = 0. Its positive eigenvalue quantifies the orientational order whereas the associated

eigenvector yields the deformation axis.

By conservation of the total number of particles3 N =
∫
c(x, t) dx, Ψ must satisfy the following

continuity equation:

∂Ψ

∂t
= −∇ · (Ψ Ṙ)−∇p · (Ψ ṗ) +D∇2Ψ +DR∇2

pΨ, (1.7)

often referred to as Smoluchowski (or advection-diffusion) equation. Here D (resp. DR) is the transla-

tional (resp. rotational) diffusion coefficient and ∇p = (I − pp)∂/∂p the gradient operator on the unit

circle.
2Integration must be performed over the whole unit circle since Ψ is not π-periodic for suspensions of polar swimmers.
3Note that this is the only conserved physical quantity.
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FIG. 1.4: (a) Continuum description of particles configurations in terms of a distribution function Ψ(x,p, t) of

the center of mass x and orientation p. (b) Splay mode. (c) Bend mode. Panels (b) and (c) adapted from [18].

As we shall later see, the diffusion coefficients play an important role in the stability. Although

biological swimmers typically do not experience thermal noise (their size makes them insensitive to

Brownian motion), shape imperfection and noise in their individual swimming mechanism are a first

source of diffusion [26, 27] and can be well modeled by constant diffusion coefficients D0, D0
R [13]. Note

that the coupling between swimming motion and orientational diffusion (which randomizes the swimming

direction) yields an additional translational diffusion coefficient [13]. The resulting random walk process

may indeed be modeled using Brenner’s generalized Taylor dispersion theory [28, 29] and it can be proved

that D = D0 + v2s/2D
0
R in 2D [6]. In addition to this individual diffusion, a second (and often dominant)

source of diffusion is attributed to hydrodynamic interactions. It has been suggested that the rotational

diffusion coefficient is proportional to the volume fraction, at least for fairly dilute systems [5, 6]. In the

dilute limit, we will neglect this source of diffusion4 (DR = D0
R), and since D0 and D0

R typically have

both low values, we have D0 � v2s/2D
0
R. It is thus safe to work under the assumption that

D =
v2s

2DR
. (1.8)

As we can see in Eqs. (1.4a), (1.4b) the translational and rotational fluxes require the velocity flow

field generated by the swimmer distribution Ψ. In the Stokes regime, we obtain this field by linear

superposition of elementary dipolar solutions given by Eq. (1.3), weighted by Ψ. This yields the following

convolution integral:

u(x, t) =

∫ ∫

a<|x′−x|<L
Ψ(x′,p, t)ud(x|x′,σ) dx′ dp. (1.9)

Note that since ud ∼ 1/r2, the integration over x′ requires special care. We can for instance assume that

the system has a size L, and that particles have a length a (cut-off distance) to ensure convergence. The

importance of cancelling the interaction of a swimmer with itself (by excluding the domain |x′ − x| < a)

has been discussed by Caussin [18].

4As we shall later see in numerical simulations, this assumption requires that we set high individual diffusion rates such

that this first source of diffusion (which we explicitely control) dominates over the spurious diffusive effects of interactions.
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Chapter 2

Linear Stability Analyses

This chapter aims at investigating the stability of three particular stationary solutions of the continuity

equation Eq. (1.7) following the methodology introduced by Saintillan and Shelley [4] and Ezhilan and

Saintillan [13]. We start by considering the uniform and isotropic base state, which is clearly the most

relevant for biological suspensions before studying the effects of a constant external flow. We finally turn

to the evolution of a nearly uniform and aligned suspension. Let us mention that since the stability

of anisotropic but fore-aft symmetric particles (for which ν = 0) has already been studied in confined

geometries [18], our analysis specifically focuses on the genuine effects of the polar shape of particles.

2.1 Nearly uniform and isotropic suspension

2.1.1 Linearization of the continuity equation

The nearly homogeneous and isotropic state is described by the following perturbed functions:

Ψ(x,p, t) =
c0
2π

+ εΨ′(x,p, t), and u(x, t) = εu′(x, t) (2.1)

where |ε| � 1 such that Ψ′,u′ = O(1). Substituting Eq. (2.1) into Eq. (1.7) and using the change of

variables p = (cos θ, sin θ) for the angular diffusion term yields, in index notation

(2.2)

∂

∂t

( c0
2π

+ εΨ′
)

= − ∂

∂xi

[( c0
2π

+ εΨ′
)(
vspi + µ‖pipjεu

′
j + µ⊥(δij − pipj)εu′j

)]

− (δij − pipj)
∂

∂pj

[( c0
2π

+ εΨ′
)(
ν(δik − pipk)εu′k + ν′(δik − pipk)ε

∂u′k
∂xl

pl

)]

+Dε
∂2Ψ′

∂xi∂xi
+DRε

∂2Ψ′

∂θ2
.

At order O(ε), the first divergence term reduces to

(2.3)
− ∂

∂xi

[
εΨ′vspi + ε

c0
2π

(
µ ‖pipju

′
j + µ ⊥(δij − pipj)u′j

)]

= −ε c0
2π

(2π

c0
vs
∂Ψ′

∂xi
pi + µ‖pipj

∂u′j
∂xi

+ µ⊥(δij − pipj)
∂u′j
∂xi

)
,
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and the second yields

(2.4)

−(δij − pipj)
∂

∂pj

[
ε
c0
2π

(
ν(δik − pipk)u′k + ν′(δik − pipk)

∂u′k
∂xl

pl

)]

= −ε c0
2π

(δij − pipj)
[
− ν(δijpku

′
k + δjkpiu

′
k) + ν′

( ∂u′i
∂xj
− ∂u′k
∂xl

(δijpkpl + δjkpipl + δjlpipk)
)]

= −ε c0
2π

[
− ν(2pku

′
k + pju

′
j − pku′k − pju′j) + ν′

(∂u′i
∂xi
− 2

∂u′k
∂xl

pkpl −
∂u′i
∂xl

pipl

− ∂u′k
∂xi

pkpi −
∂u′i
∂xj

pipj +
∂u′k
∂xl

pkpl +
∂u′j
∂xl

pjpl +
∂u′k
∂xj

pkpj

)]

= −ε c0
2π

[
− νpiu′i + ν′

(∂u′i
∂xi
− 2

∂u′i
∂xj

pipj

)]
.

Putting together Eqs. (2.2)-(2.4) yields the linearized continuity equation, in vector notation

∂Ψ′

∂t
= −vs∇xΨ′ ·p+

c0
2π

(
νu′ ·p−(µ⊥+ν′)∇·u′+(µ⊥−µ‖+2ν′)∇u′ : pp

)
+D∇2

xΨ′+DR
∂2Ψ′

∂θ2
. (2.5)

In order to decouple the velocity field u′ and its derivatives from this equation, we first need to express

∇ · u′ in terms of Ψ′ or the perturbed moments c = c0 + εc′,P = εP′,Q = εQ′. By definition, we have

∇ · u(x, t) = ε∇ · u′(x, t) =

∫∫
Ψ(x′,p, t)

(
− σ · ∇δ(x− x′)

)
dx′ dp, (2.6)

where, recalling Eq. (1.4a)

σ(x,p, t) = σ
(
vsp + (µ⊥ − 1)εu′(x, t) + (µ‖ − µ⊥)pp · εu′(x, t)

)
(2.7)

Let us now split Eq. (2.6) in three terms, as suggested by Eq. (2.7). The first yields

(2.8a)

−σvs
∫∫

Ψ(x′,p, t)p · ∇δ(x− x′) dx′ dp = −σvs
∫
∇x ·

(
Ψ(x,p, t)p

)
dp

= −σvs∇ ·
∫

Ψ(x,p, t)p dp

= −σvs∇ ·
(

(c0 + εc′)εP′
)

(x, t)

= −εσvs∇ · (c0P′)(x, t) +O(ε2).

Similarly, the second term simplifies to

(2.8b)

−εσ(µ⊥ − 1)

∫∫
Ψ(x′,p, t)u′(x′, t) · ∇δ(x− x′) dx′ dp

= −εσ(µ⊥ − 1)

∫
∇x ·

(
Ψ(x,p, t)u′(x, t)

)
dp

= −εσ(µ⊥ − 1)∇ · (c0u′)(x, t) +O(ε2),

and the third

(2.8c)

−εσ(µ‖ − µ⊥)

∫∫
Ψ(x′,p, t)pp · u′(x′, t) · ∇δ(x− x′) dx′ dp

= −εσ(µ‖ − µ⊥)

∫
∇x ·

(
Ψ(x,p, t)pp · u′(x, t)

)
dp

= −εσ(µ‖ − µ⊥)∇ ·
(c0u′

2

)
(x, t) +O(ε2).
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Summing the contributions given by Eqs. (2.8a)-(2.8c), we rewrite Eq. (2.6) as

ε∇ · u′ = εσ∇ ·
[
− vsc0P′ +

(
1−

µ⊥ + µ‖
2

)
c0u
′
]

+O(ε2), (2.9)

which, at leading order in ε, simplifies to

∇ · u′ = −fvs∇ ·P′, (2.10)

where we defined

f =
σc0

1− σc0(1− µ̄)
. (2.11)

Let us give a physical interpretation of f . Since the dipole strength σ is typically twice the particle area

(for a disk shape), σc0/2 can be interpreted as a surface fraction (percentage of total surface covered by

the particles). For this reason, σc0 = 2 is the absolute theoretical limit (it represents square particles

packed without fluid in between). We shall however choose a more physical limit corresponding to

particles filling half of the suspension: σc0 = 1 (this prevents f from blowing up). Hence, working in

the dilute limit means for us σc0 � 1. It follows that f can be interpreted as a corrected double surface

fraction (f > 2(σc0/2)), inceasing with lower average mobility µ̄.

2.1.2 Fourier transform of the linearized equation

We can now make analytical progress by assuming that the perturbation variables Ψ′ and u′ take the

form of plane waves

Ψ′(x,p, t) = Ψ̃(k,p) exp(ik · x + αt) and u′(x, t) = ũ(k) exp(ik · x + αt) (2.12)

where k = kk̂ is the wave vector and α the complex growth rate. This spatial Fourier transform will

enable us to decouple the velocity and its derivatives from our linear stability equation. Defining P̃(k)

as the Fourier amplitude of P′, Eq. (2.10) yields, in the Fourier space

∇̃ · u′ = −ikfvsP̃ · k̂. (2.13)

Recalling the fact that u is potential, we can use this to deduce the Fourier transform of u′ itself by

considering the (potential) pressure Π′(x, t) = Π̃(k) exp(ik · x + αt). Combining Eqs. (1.1), (2.13) we

indeed get

h2

12η
k2Π̃ = −ikfvsP̃ · k̂. (2.14)

Using this expression for Π̃ and Eq. (1.1) again, it follows that

ũ′ = −ik
(
− 1

k2
ikfvsP̃ · k̂

)
= −fvs(P̃ · k̂)k̂, (2.15)

from which it is straightforward to compute the Fourier transform of the velocity gradient

∇̃u = −ikfvs(P̃ · k̂)k̂k̂. (2.16)
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Our objective is now to rewrite the linearized equation Eq. (2.5) in terms of Fourier amplitudes.

Combining Eqs. (2.13), (2.15) and (2.16) yields

(2.17)

αΨ̃ = −vsikΨ̃ · p +
c0
2π

(
ν(ũ · p)− (µ⊥ + ν′)∇̃ · u + (µ⊥ − µ‖ + 2ν′)∇̃u:pp

)
−Dk2Ψ̃ +DR

∂2Ψ̃

∂θ2

= −ivsk · pΨ̃ + fvs
c0
2π

(
− ν(P̃ · k̂)k̂ · p + (µ⊥ + ν′)ik(P̃ · k̂)

− (µ⊥ − µ‖ + 2ν′)ik(P̃ · k̂)k̂k̂:pp
)
− k2DΨ̃ +DR

∂2Ψ̃

∂θ2
.

Without loss of generality, we write Ψ̃(k,p) = Ψ̃(θ) where θ = cos−1(k̂ · p) and expand it as a series of

Fourier modes Ψ̃(θ) =
∑+∞
n=−∞ Ψ̃n exp(inθ). By orthogonality, the projection of the Fourier transform of

the polarization on the unitary wave vector is simply

P̃ · k̂ =
( 1

c0

∫ 2π

0

p

+∞∑

n=−∞
Ψ̃n exp(inθ) dθ

)
· k̂ =

1

c0

+∞∑

n=−∞
Ψ̃n

∫ 2π

0

cos θ exp(inθ) dθ =
π

c0
(Ψ̃−1 + Ψ̃1).

(2.18)

Eventually, we use Eq. (2.18) to simplify Eq. (2.17), and we find that

(2.19)
(α+ k2D)Ψ̃ = −ikvs cos θΨ̃ +

fvs
2

(
− ν(Ψ̃−1 + Ψ̃1) cos θ + ik(µ⊥ + ν′)(Ψ̃−1 + Ψ̃1)

− ik(µ⊥ − µ‖ + 2ν′)(Ψ̃−1 + Ψ̃1) cos2 θ
)

+DR
∂2Ψ̃

∂θ2
.

2.1.3 Non-dimensionalization and eigenvalue problem

The stability equation for the Fourier amplitude Eq. (2.19) can be written as an eigenvalue problem for

the discrete Fourier modes Ψ̃n. Dividing by DR we indeed obtain the following dimensionless expression:

α+ k2D

DR

+∞∑

n =−∞
Ψ̃ne

inθ =

+∞∑

n=−∞

(
− ik vs

2DR
(Ψ̃n−1 + Ψ̃n+1)− n2Ψ̃n

)
einθ +

fvs
2DR

(Ψ̃−1 + Ψ̃1)
(
ik
µ⊥ + µ‖

2

− ν

2
(eiθ + e−iθ)− ik

µ⊥ − µ‖ + 2ν′

2
(ei2θ + e−i2θ)

)
.

(2.20)

We notice that the translational diffusion simply shifts the real part of α by −k2D, damping potential

instabilities with increasing wavenumber. As D tends to smooth out the concentration field, this observa-

tion is consistent with the expectation that its works against the formation of concentration instabilities

at finite wavenumbers. Note that Eq. (2.20) features the following interesting lengthscale:

l =
vs

2DR
, (2.21)

which we interpret as the distance travelled by a swimmer before losing its orientation because of diffusion.

To gain insight into the physical phenomena involved in this stability problem, let us further define the

following five dimensionless parameters:

Pe = fνl, H̄ = fµ̄, H̃ = f(µ̃+ 2ν′), α′ =
α

DR
, k′ = kl. (2.22)
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Using these notations and the relation between D and DR established in Eq. (1.8), we find that

α+ k2D

DR
= α′ + 2k′2. (2.23)

Recall that the sign of ν, and hence, of the signed Péclet number Pe is different for large-head (Pe < 0)

and large-tail (Pe > 0) swimmers. Its absolute value quantifies the ratio between rotation induced by

self-advection of particles and rotational diffusion (recall νl ∼ l/a i.e. Pe scales as the ratio between

swimming distance with orientation memory l and dumbbell length a). In other words, |Pe| is maximal

when (i) swimmers are relatively close to each other (large f), (ii) they travel long distances with

memory of their orientation (large l), (iii) their orientation responds sensitively to the flow (large |ν|).
We can therefore already speculate that a large absolute value of the Péclet number may trigger large-

scale correlated motion. In contrast with Pe which results from the polarity (fore-aft asymmetry) of

swimmers, H̄ quantifies mobility while H̃ is a sole consequence of anisotropy. We shall also point out

that 0 < H̄ < 1 in the limit σc0 < 1, and as H̃ may blow up for {σc0 → 1, µ̄ → 0} we will assume

0 < H̃ < 2 in the reasonable limit σc0 < 1/2 (i.e. 25% surface fraction). With these notations, Eq. (2.20)

becomes

(α′ + 2k′2)

+∞∑

n=−∞
Ψ̃ne

inθ =

+∞∑

n=−∞

(
− ik′(Ψ̃n−1 + Ψ̃n+1)− n2Ψ̃n

)
einθ

+ (Ψ̃−1 + Ψ̃1)
(
ik′H̄ − Pe

2
(eiθ + e−iθ)− ik′ H̃

2
(ei2θ + e−i2θ)

)
, (2.24)

or equivalently, in matrix form

(α′+2k′2)




...

Ψ̃−3

Ψ̃−2

Ψ̃−1

Ψ̃0

Ψ̃1

Ψ̃2

Ψ̃3

...




=




. . .
. . .

. . . −9 −ik′

−ik′ −4 −ik′(1 + H̃
2 ) −ik′ H̃2

−ik′ −(1 + Pe
2 ) −ik′ −Pe2

−ik′(1− H̄) 0 −ik′(1− H̄)

−Pe2 −ik′ −(1 + Pe
2 ) −ik′

−ik′ H̃2 −ik′(1 + H̃
2 ) −4 −ik′

−ik′ −9
. . .

. . .
. . .




·




...

Ψ̃−3

Ψ̃−2

Ψ̃−1

Ψ̃0

Ψ̃1

Ψ̃2

Ψ̃3

...




(2.25)

The focus of the following section is to solve this eigenvalue problem for different values of Pe, H̄, H̃, k′

and determine whether or not it admits positive values for the real part of α′, meaning instability of

the homogeneous and isotropic base state. Taking into account a relatively small number of modes (say

2N + 1 modes), we should converge quickly since we focus our attention on the single eigenvalue with the

largest real part. For such a solution of interest α′m, the corresponding mode Ψ̃m(θ) is computed in the

real space using its 2N + 1 components Ψ̃m
n ∈ C: Ψ̃m(θ) = Re

(∑N
n=−N Ψ̃m

n exp(inθ)
)

. Alternatively,

considering the special pattern of the matrix, this reduces to

Ψ̃m(θ) = Re(Ψ̃m
0 ) + 2

N∑

n=1

Re(Ψ̃m
n ) cosnθ. (2.26)
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Note that Re(Ψ̃m
0 ) 6= 0 corresponds to a mode involving concentration fluctuations. Similarly, a large

first order harmonic 2Re(Ψ̃m
1 ) indicates a polarization mode and the second harmonic 2Re(Ψ̃m

2 ) a splay

mode, in consistency with the notions introduced in Sec. 1.4.

2.1.4 Large-scale instability of large-head swimmers

Solving the eigenvalue problem Eq. (2.25) numerically showed that suspensions of large-head swimmers

for which Pe < −1 are always unstable at low wavenumbers.

Fig. 2.1a shows the two greatest real eigenvalues Re(α′) as a function of k′ for different values of Pe,

and their corresponding imaginary part. We notice that time oscillations start at a finite k′∗ when the
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FIG. 2.1: Numerical solutions of the stability eigenvalue problem for H̄ = H̃ = 0. (a) Real and imaginary growth

rate for various unstable Péclet numbers. (b) Critical wavenumber k′c as a function of Pe for extreme values of

H̄, H̃, showing the little influence of these parameters. (c) Unstable Fourier modes Ψ̃n: reparitition of the zeroth,

first, second and higher-orders harmonics as a function of k′ for Pe = −2. (d) Shape of unstable mode Ψ̃(θ) for

Pe = −2 in the two distinct regimes identified on (a) and (c).

two real eigenvalues become equal and form a single branch, which can happen in the unstable regime

provided that Pe > −3. In the long wavelength limit k′ = 0 we found Re(α′) = −(1 + Pe), confirming

previous results by Brotto et al. [20]. Instability therefore always occurs when Pe < −1 at sufficiently

low wavenumbers and lower values of Pe (i.e. larger |Pe|) increase the critical wavenumber k′c, defined
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as the k′ value for which Re(α′) = 0), as shown in Fig. 2.1b. This figure also proves that this behavior

is surprisingly independent of the mobility and anisotropy dimensionless parameters H̄, H̃. A way to

interpret this point of stability transition is to consider the smallest unstable wavelength Lc

Lc
l

=
2π

k′c
, (2.27)

where Lc is non-dimensionalized by the distance l over which the orientation of a swimmer can overcome

diffusion. This means that systems containing perturbations of wavelength L > Lc are unstable, and

as α′ is a decreasing function of k′, we expect the largest instability to always dominate. Considering a

periodic box, Lc may be thought of as the critical system size, above which it becomes unstable.

As shown in Fig. 2.1c and Fig. 2.1d, this instability involves pure longitudinal polarization for k′ < k′∗,

and a strong coupling between concentration, polarization and (to a lesser extent) splay for k′ > k′∗.

For Pe < −3 or in very large systems (L/l > 2π/k′∗), we therefore expect large-scale spatial fluctuations

of particles aligning along and against the directions of large-wavelength perturbations. In addition to

those (static) polarization fluctuations, Pe < −3 allows medium-sized systems (2π/k′c < L/l < 2π/k′∗) to

exhibit concentration and splay fluctuations. We further predict in that case that these waves propagate

with time with higher phase speed for smaller systems (see Fig. 2.1a).

As it clearly emerges from this analysis, anisotropy alone does not lead to instability in the dilute limit,

as Caussin concluded in a previous analysis with ν = 0 [18]. The underlying mechanism of the instability

presented here may only be physically understood considering the dipolar symmetry of the interactions

and the polar shape of particles. Eq. (2.10) indeed shows that a local polarization perturbation δP result

in a fluid flow in the opposite direction δu = −fvsδP. Since large-heads align against the flow δu (i.e.

along δP), they might end up increasing the perturbation if their rate of reorientation |ν| is great enough

to overcome rotational diffusion (|Pe| precisely quantifies this ratio) [20]. The existence of two different

modes according to the system size is however still not well understood.

2.2 Influence of a uniform external flow

In this section, we shall see how the previous stability results are modified when the suspension is subject

to a constant and uniform external flow U0. In consistency with the results of the previous analysis, we

focus here on the effect of polarity ν and assume that µ⊥ = µ‖ = 1, ν′ = 0, significantly simplifying

the following derivations. Our expectation is that the prescribed flow will stabilize the suspension by

controlling the orientations of swimmers, as found in a similar analysis carried out in the 3D case for a

simple shear flow (recall that unconfined particles can only reorient with flow gradients) [7].

2.2.1 Polar steady state

We first seek a spatially uniform steady solution of the equations of the form c0Ψ0(p), which will serve

as base state for our stability analysis. Under these assumptions, we can rewrite the continuity equation
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Eq. (1.7) and the angular flux Eq. (1.4b) as

−∇p · (Ψ0 ṗ) = 0 with ṗ = ν (I− pp) ·U0 −DR∇p ln Ψ0. (2.28)

The solution we seek is obtained by setting the angular flux velocity ṗ to zero

∇p ln Ψ0 =
ν

DR
(I− pp) ·U0. (2.29)

Eq. (2.29) simply expresses the balance between rotational diffusion and alignment of the particles along

the external flow. It is straightforward to show that the corresponding base state is

Ψ0(p) = A exp
( ν

DR
U0 · p

)
, (2.30)

where the integration constant A is determined to normalize Ψ0 according to
∫

Ψ0(p) dp = 1. Without

loss of generality, we set U0 = U0ex and θ = cos−1(p · ex), and rewrite this polar state as

Ψ0(θ) = A exp(ξ cos θ), with ξ =
νU0

DR
, (2.31)

where ξ measures the nondimensional flow strength (this uncovers a new velocity scale DR/ν in the

system). Fig. 2.2a illustrates the base states corresponding to various ξ. We shall also introduce the

polarization P0 = P0ex, which will prove useful in the following. By definition we have

P0 =

∫
Ψ0(p)p · ex dp =

∫ 2π

0
exp(ξ cos θ) cos θ dθ
∫ 2π

0
exp(ξ cos θ) dθ

. (2.32)

As shown on Fig. 2.2b, P = 0 obviously corresponds to the isotropic state ξ = 0 considered in the previous

section, while complete polarization P = 1 could only be attained in the limit ξ →∞.
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FIG. 2.2: Polar base state of an uniform suspension with constant imposed flow. (a) Normalized orientation

distribution Ψ0(θ) (θ is the angle with the flow) for various nondimensional flow strengths ξ. (b) Base state

polarization P0 as a function of ξ.

2.2.2 Linearized equation and eigenvalue problem

Let us now consider a small perturbation Ψ′ of the distribution function with respect to Ψ0:

Ψ(x,p, t) = c0Ψ0(p) + εΨ′(x,p, t), (2.33)
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where again |ε| � 1, Ψ′ = O(1) and similar perturbations are assumed for the other variables. Linearizing

Eq. (1.7) in a similar way as in the isotropic case, we derived the following equation for the evolution of

the perturbation:

(2.34)

∂Ψ′

∂t
= −∇Ψ′ · (vsp + U0)− c0Ψ0∇ · u′ − ν

(
∇pΨ′(I− pp) ·U0

+ c0∇pΨ0(I− pp) · u′ −Ψ′U0 · p− c0Ψ0u
′ · p

)
+D∇2Ψ′ +DR∇2

pΨ
′.

To decouple the velocity field from this equation, we can show that

∇ · u′ = −fvs
(
∇c′ ·P0 +∇ ·P′

)
, (2.35)

where f = σc0, P0 = P0ex. We can check that if U0 = P0 = 0, Eqs. (2.34), (2.35) indeed reduce to

Eqs. (2.5), (2.10) obtained in the isotropic case.

We now proceed to study these perturbations in the Fourier space, and write Ψ′(x,p, t) = Ψ̃ exp(ik ·
x+αt), u′(x, t) = ũ exp(ik · x+αt), with k = kk̂ the plane wave vector and α the complex growth rate.

Standard manipulations described previously yield for the velocity field

∇̃ · u′ = −ikfvs
(
P0c̃ k̂ · ex + P̃ · k̂

)
, (2.36a)

ũ′ = −fvs
(
P0c̃ (k̂ · ex)k̂ + (P̃ · k̂)k̂

)
. (2.36b)

As we can see, an important difference with the isotropic case is the dependence of the results on the

direction k̂ of the wave with respect to the base state alignment direction ex. It is therefore necessary

to introduce the second angle Θ = cos−1(k̂ · ex). Using these notations, the Fourier transform of the

linearized equation Eq. (2.34) is

(2.37)
(α+ k2D)Ψ̃ = Ψ̃

(
− ik(vs cos(θ −Θ) + U0 cos Θ) + νU0 cos θ

)
+ νU0

∂Ψ̃

∂θ
sin θ + c0Ψ0

(
P0c̃ cos Θ

+ P̃ · k̂
)(
fvsik + fvsνξ(cos Θ− cos(θ −Θ)− fvsν cos(θ −Θ)

)
+DR

∂2Ψ̃

∂θ2
.

This eigenvalue problem may be written (α + k2D)Ψ̃ = L[Ψ̃], and by expanding Ψ̃ in Fourier modes θ:

Ψ̃(θ) =
∑+∞
n=−∞ Ψ̃n exp(inθ), we formally get (α+ k2D)

∑+∞
n=−∞ Ψ̃n exp(inθ) =

∑+∞
n=−∞ L[exp(inθ)]Ψ̃n.

Non-dimensionalizing by DR indeed yields

(α′ + 2k′2)

+∞∑

n =−∞
Ψ̃n exp(inθ) =

[
− 2ik′

(
cos(θ −Θ) +

U0

vs
cos Θ

)
+ ξ cos θ

] +∞∑

n=−∞
Ψ̃n exp(inθ)

+ ξ

+∞∑

n=−∞
inΨ̃n exp(inθ) sin θ + πΨ0(θ)

[[
Ψ̃−1 exp(−iΘ)

+ Ψ̃1 exp(iΘ) + 2P0Ψ̃0 cos Θ

][
2fik′ + 2Pe

(
ξ(cos Θ− cos(θ −Θ))

− cos(θ −Θ)
)]]
−

+∞∑

n=−∞
n2Ψ̃n exp(inθ),

(2.38)
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where the nondimensional parameters α′, k′ and Pe are defined in Eq. (2.22). Applying the linear operator

(1/2π)
∫ 2π

0
exp(−imθ) dθ to Eq. (2.38), we write this eigenvalue problem in matrix form. Formally,

(α′ + 2k′2)Ψ̃m =

+∞∑

n=−∞

1

2π

∫ 2π

0

L[exp(inθ)] exp(−imθ) dθ

︸ ︷︷ ︸
Amn

Ψ̃n. (2.39)

Applying this procedure to Eq. (2.38) yields for the coefficients Amn

A =




. . .
. . .

...
...

...

. . . B1 B2 exp(−iΘ)B4 (2P0 cos Θ)B4 exp(iΘ)B4

B3 B1 B2 + exp(−iΘ)B4 (2P0 cos Θ)B4 exp(iΘ)B4

B3 B1 + exp(−iΘ)B4 B2 + (2P0 cos Θ)B4 exp(iΘ)B4

B3 + exp(−iΘ)B4 B1 + (2P0 cos Θ)B4 B2 + exp(iΘ)B4

exp(−iΘ)B4 B3 + (2P0 cos Θ)B4 B1 + exp(iΘ)B4 B2

exp(−iΘ)B4 (2P0 cos Θ)B4 B3 + exp(iΘ)B4 B1 B2

exp(−iΘ)B4 (2P0 cos Θ)B4 exp(iΘ)B4 B3 B1
. . .

...
...

...
. . .

. . .




(2.40)

where the diagonal, superdiagonal and subdiagonal coupling terms are respectively

B1 = −2ik′
U0

vs
cos Θ−m2, (2.41a)

B2 = −ik′ exp(iΘ)− ξm
2
, (2.41b)

B3 = −ik′ exp(−iΘ) + ξ
m

2
, (2.41c)

and m denotes the row number. Finally, the integral terms B4 on the vertical bands, responsible for the

coupling of all modes with the concentration and polarization ones, must be computed numerically:

B4 =

∫ 2π

0

[
Pe

(
ξ
(

cos Θ− cos(θ −Θ)
)
− cos(θ −Θ)

)
+ ik′f

]
Ψ0(θ) exp(−imθ) dθ. (2.41d)

We notice that the main parameters of interest in this eigenvalue problem are ξ and Θ, and that the ratio

U0/vs only plays a (limited) role at finite wavenumbers k′ > 0, which we neglect in the following.

2.2.3 Stabilization of large-heads

After solving this eigenvalue problems numerically, we demonstrate that the flow has a stabilizing effect on

large-head suspensions, which we recall are known to be unstable for Pe < −1 in the isotropic case ξ = 0

at k′ = 0. As shown on Fig. 2.3a, the unstable critical Péclet number in the long-wavelength limit (k′ = 0)

is severely decreased as the nondimensional flow strength ξ increases (here Θ = 0). Investigation of the

Θ-dependence (see Fig. 2.3b) further shows that Θ = 0 or Θ = π are the most effective angles1, at least

for |ξ| & 1, but Θ = π/2 is surprisingly found to be equivalent for |ξ| . 1. Eventually, Fig. 2.3c analyzes

1Note the equivalence of Θ = 0 and Θ = π (and hence of ξ and −ξ) in this problem, explaining why we keep taking

ξ > 0 values as examples, even though large-heads are strictly speaking characterized by ξ < 0.

18



-15

-10

-5

0

P
e c

0 1 2 3

ξ

(a)
-6

-5

-4

-3

-2

-1

0

P
e c

0 π/4 π/2 3π/4 π

Θ

ξ = 1
ξ = 2

(b)
-6

-5

-4

-3

-2

-1

0

P
e

0.0 0.5 1.0

k′c

ξ = 0
ξ = 1
ξ = 2

(c)

FIG. 2.3: Added stability with an external flow in large-heads suspensions (f = 0, U0/vs = 0). (a) Critical Péclet

number Pec as a function of flow strength ξ in the k′ = 0 limit for a wave in the flow direction Θ = 0. (b) Pec

as a function of Θ (k′ = 0). (c) Influence of ξ in the system threshold size (critical wavenumber k′c).

the influence of the flow on the system threshold size criterion, generalizing the results of Fig. 2.1b to

non-zero ξ values. Interestingly, we notice that small values of |ξ| may actually slightly destabilize the

smallest systems and that the function Pe = Pe(kc) may no longer be monotonic, especially for large

values of |ξ|. Note that this does not mean that larger systems may be more stable than smaller ones

(assuming that a system of size L has random perturbations of all wavelengths ≤
√

2L), but rather that

the instabilities may develop at smaller scales.

2.3 Nearly uniform and aligned suspension

2.3.1 Reduced equations in the aligned case

To address the stability around the aligned steady state, we consider a distribution function of the form

Ψ(x,p, t) = c(x, t)δ(p−P(x, t)), (2.42)

where δ is the Dirac delta function. This simple p-dependence (separation of variables) is very helpful

in the modeling of suspensions where a single polarization P at a given location may be assumed. Using

this closure relation, our objective is to derive equations for the concentration and polarization fields.

It is clear from the continuity equation Eq. (1.7) that rotational diffusion makes the uniform and

aligned state unsteady, hence we set DR = 0 to study the stability of this state. The evolution of c is

then simply obtained by integrating Eq. (1.7) with respect to p on the unit circle:

∂c

∂t
=

∫
∂Ψ

∂t
dp =

∫ (
−∇ · (Ψ Ṙ)−∇p · (Ψ ṗ) +D∇2Ψ

)
dp

= −∇ ·
∫
c δ(p−P)

(
vsp + µ⊥u + (µ‖ − µ⊥)pp · u

)
dp +D∇2

∫
Ψ dp

= −∇ ·
[
c
(
vsP + µ⊥u + (µ‖ − µ⊥)PP · u

)]
+D∇2c. (2.43)
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Similarly, we derive an evolution equation for cP =
∫

Ψp dp as follows:

∂(cP)

∂t
= −∇ ·

∫
c δ(p−P)

(
vsp + µ⊥u + (µ‖ − µ⊥)pp · u

)
p dp

−
∫

p∇p ·
[
c δ(p−P)

(
ν(I− pp) · u + ν′(I− pp) · ∇u · p

)]
dp +D∇2

∫
Ψp dp

= −∇ ·
[
c
(
vsP + µ⊥u + (µ‖ − µ⊥)PP · u

)
P

]

+c
(
ν(I−PP) · u + ν′(I−PP) · ∇u ·P

)
+D∇2(cP). (2.44)

where we used integration by parts for the second integral. Expanding the derivatives yields

(2.45)
P
∂c

∂t
+ c

∂P

∂t
=−P ∇·

[
c
(
vsP+µ⊥u+(µ‖−µ⊥)PP ·u

)]
−c
(
vsP+µ⊥u+(µ‖−µ⊥)PP ·u

)
∇·P

+ c
(
ν(I−PP) · u + ν′(I−PP) · ∇u ·P

)
+D (P∇2c+ 2∇c · ∇P + c∇2P),

We now make use of Eq. (2.43) to deduce an equation for P

∂P

∂t
= −

(
vsP+µ⊥u+(µ‖−µ⊥)PP ·u

)
∇·P+(I−PP) ·(νu+ν′∇u ·P)+D

(
2
∇c
c
·∇P+∇2P

)
. (2.46)

2.3.2 Linearization

We consider a suspension with an initial uniform concentration c0 and alignment x̂. This stationary

solution is slightly perturbed as follows:

c(x, t) = c0(1 + εc′(x, t)) and P(x, t) = x̂ + εP′(x, t), (2.47)

where |x̂| = 1, P′ · x̂ = 0 and we assume similar perturbations for the velocity and pressure fields:

u(x, t) = εu′(x, t) and Π(x, t) = εΠ′(x, t). Using the reduced equations Eqs. (2.43), (2.46) we aim at

obtaining a set of linearized equations for the perturbation variables c′ and P′ valid in the |ε| � 1 limit.

We therefore start by plugging Eq. (2.47) into Eq. (2.43)

c0
∂(1 + εc′)

∂t
=−c0∇·

[
(1+εc′)

(
vs(x̂+εP′)+µ⊥εu

′+(µ‖−µ⊥)(x̂+εP′)(x̂+εP′) ·εu′
)]

+D∇2(1+εc′)

= −c0∇ ·
(
εc′vsx̂ + vsεP

′ + µ⊥εu
′ + (µ‖ − µ⊥)x̂x̂ · εu′

)
+Dc0∇2(εc′) +O(ε2),

(2.48)

which, at leading order in ε, reduces to

∂c′

∂t
= −vs(∇c′ · x̂ +∇ ·P′)− µ⊥∇ · u′ − (µ‖ − µ⊥)∇u′ : x̂x̂ +D∇2c′. (2.49)

Similarly, plugging Eq. (2.47) into Eq. (2.46), we obtain

(2.50)

∂(x̂ + εP′)
∂t

= −
(
vs(x̂ + εP′) + µ⊥εu

′ + (µ‖ − µ⊥)(x̂ + εP′)(x̂ + εP′) · εu′
)
∇ · (x̂ + εP′)

+
(
I− (x̂ + εP′)(x̂ + εP′)

)
·
(
νεu′ + ν′ε∇u′ · (x̂ + εP′)

)

+ 2D
∇(1 + εc′)

1 + εc′
· ∇(x̂ + εP′) +D∇2(x̂ + εP′)

= −vsx̂∇ · (εP′) + (I− x̂x̂) · (νεu′ + ν′ε∇u′ · x̂) +D∇2(εP′) +O(ε2),

20



or, at leading order in ε

∂P′

∂t
= −vs∇ ·P′ x̂ + (I− x̂x̂) · (νu′ + ν′∇u′ · x̂) +D∇2P′. (2.51)

We must now find a relation between u′ and c′,P′. Recalling Eqs. (2.8a)-(2.8c), we write

(2.52)
∇ · u = −σ ∇ ·

[
c
(
vsP + (µ⊥ − 1)u + (µ‖ − µ⊥)PP · u

)]

= −σc0 ∇ ·
[
(1 + εc′)

(
vs(x̂ + εP′) + (µ⊥ − 1)εu′ + (µ‖ − µ⊥)(x̂ + εP′)(x̂ + εP′) · εu′

)]
,

from which we deduce the following expression for the perturbation velocity:

∇ · u′ = −σc0vs ∇ · (c′x̂ + P′)− σc0
(

(µ⊥ − 1)∇ · u′ + (µ‖ − µ⊥)∇u′ : x̂x̂
)
. (2.53)

We can get a simple expression for ∇ ·u′ making the assumption that the anisotropy of our swimmers is

small enough2 to neglect the term in ∇u′. Under this µ̃ ≈ 0 approximation (i.e. µ⊥, µ‖ ≈ µ̄) we have

∇ · u′ = −fvs(∇c′ · x̂ +∇ ·P′). (2.54)

where f , the corrected volume fraction, is defined in Eq. (2.11).

2.3.3 Fourier transform and eigenvalue problem

Assuming that the perturbations take the form of plane waves, it is natural to study the two linear

equations Eqs. (2.49), (2.51) in the Fourier space

c′(x, t) = c̃(k, x̂) exp(ik · x + αt) and P′(x, t) = P̃(k, x̂) exp(ik · x + αt), (2.55)

where c̃, P̃ are the Fourier amplitudes (u′ and Π′ take the same form). We can then use Eq. (2.54) to

find the Fourier amplitudes of ∇ · u′, u′ and ∇u′, successively:

∇̃ · u′ = −ikfvs(c̃k̂ · x̂ + P̃ · k̂), (2.56a)

ũ′ = −fvs
(
c̃(k̂ · x̂)k̂ + (P̃ · k̂)k̂

)
, (2.56b)

∇̃u′ = −ikfvs
(
c̃(k̂ · x̂)k̂k̂ + (P̃ · k̂)k̂k̂), (2.56c)

where use has been made of the fact that u′ is potential as in Eq. (2.14). It is now possible to rewrite

Eqs. (2.49), (2.51) in terms of Fourier amplitudes

αc̃ = −ikvs(c̃k̂ · x̂ + P̃ · k̂) + ikvsfµ⊥(c̃k̂ · x̂ + P̃ · k̂)

+ikvsf(µ‖ − µ⊥)
(
c̃(k̂ · x̂)k̂k̂ : x̂x̂ + (P̃ · k̂)k̂k̂ : x̂x̂

)
−Dk2c̃, (2.57a)

αP̃ = −ikvs(P̃ · k̂)x̂− fvs(I− x̂x̂)

[
ν
(
c̃(k̂ · x̂)k̂ + (P̃ · k̂)k̂

)

+ikν′
(
c̃(k̂ · x̂)k̂k̂ · x̂ + (P̃ · k̂)k̂k̂ · x̂

)]
−Dk2P̃. (2.57b)

2This is consistent with our aim to focus on the influence of polarity (parameter ν) on stability. As previously mentionned,

the instabilities associated with the (probably similar) effects of ν′ 6= 0 have been studied by Caussin [18].
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Let us define in whole generality θ = cos−1(x̂ · k̂) and recall that P̃ ⊥ x̂ such that P̃ · k̂ = P̃ sin θ.

Eqs. (2.57a), (2.57b) hence take the following scalar form

(α+ k2D)c̃ = ikvs

(
− (c̃ cos θ + P̃ sin θ) + fµ⊥(c̃ cos θ + P̃ sin θ)

+f(µ‖ − µ⊥)(c̃ cos3 θ + P̃ sin θ cos2 θ)
)

(2.58a)

(α+ k2D)P̃ sin θ = −ikvs(P̃ · k̂)x̂ · k̂− fvs
(

(I− x̂x̂) : k̂k̂
)[
ν
(
c̃(k̂ · x̂) + (P̃ · k̂)

)

+ν′ik
(
c̃(k̂ · x̂)k̂ · x̂ + (P̃ · k̂)k̂ · x̂

)]

= −ikvsP̃ sin θ cos θ − fvs sin2 θ
(
ν(c̃ cos θ + P̃ sin θ)

+ν′ik(c̃ cos2 θ + P̃ sin θ cos θ)
)
. (2.58b)

Anticipating on our results, we notice that θ = 0 and θ = π perturbations (for which k̂ ‖ x̂) are stable

(as expected), so that we shall not investigate these cases further and therefore divide Eq. (2.58b) by

sin θ. It further proves convenient to scale the growth rate as: α′ = (α + k2D)/vs (with dimension

[α′] = [k] = L−1), and by doing that, we acknowledge the fact that the translational diffusion D simply

increases stability at high k. In matrix form, the eigenvalue problem Eqs. (2.58a), (2.58b) yields

α′
(
c̃

P̃

)
=


−ik cos θ

(
1− f(µ‖ cos2 θ + µ⊥ sin2 θ)

)
−ik sin θ

(
1− f(µ‖ cos2 θ + µ⊥ sin2 θ)

)

− 1
2f sin 2θ(ν + ikν′ cos θ) −ik cos θ − f sin2 θ(ν + ikν′ cos θ)


 ·

(
c̃

P̃

)
,

(2.59)

or, following the notations introduced in Eq. (2.22)

α′
(
c̃

P̃

)
= −ik

(
cos θ(1− H̄ + 1

2H̃ cos 2θ) sin θ(1− H̄ + 1
2H̃ cos 2θ)

1
2 sin 2θ(−i fνk + fν′ cos θ) cos θ + sin2 θ(−i fνk + fν′ cos θ)

)
·

(
c̃

P̃

)
. (2.60)

Two special cases of this problem may easily be solved analytically. First, in the long-wavelength

limit k → 0, the non-zero eigenvalue of the system Eq. (2.60) is

α′ = −fν sin2 θ, (2.61)

with a unstable mode involving pure polarization (c̃ = 0). In this case, perturbations normal to the initial

direction (θ = π/2) are (quite intuitively) the most unstable. Second, for θ = π/2 perturbations, it is

straightforward to show that

α′ = −fν, (2.62)

regardless of the wavenumber k, with a complex mode c̃ = [ik(1−H̄)/fν]P̃ . This result will be especially

relevant for large-heads, where θ = π/2 is often close to the most unstable angle as we will discuss next.

2.3.4 Large-head instability

To start with, Eq. (2.61) means that the polarization of large-heads (ν < 0) is unstable to long-wavelength

perturbations and tends to grow perpendicular to the main direction. Eq. (2.62) focuses on π/2 per-

turbations but catches the k-dependence and suggests that such perturbations result in a growth rate
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α = −vsfν − k2D, that increases with the swimming speed, surface fraction and polarity. Most interest-

ingly, opposite phase concentration fluctuations are found for finite k/ν ratios. Specifically, this occurs

when the perturbation wavelength λ becomes of the order of magnitude of the length of a dumbbell swim-

mer a (since k/ν ∼ a/λ)3. In short, these two simple results enable us to conclude that the concentration

and polarization of large-head suspensions are unstable, probably mostly to θ = π/2 waves and that the

role of the ratio between the length of particles and the wavelength needs further investigation.

Let us now try to understand the instability associated to π/2 perturbations with simple physical

arguments, as done in [18]. Fig. 2.4 depicts large-head dumbbells swimming in the x direction and

experiencing short wavelength (λ ≈ a), opposite phase perturbations in concentration δc and polarization

δP. First, δc makes swimmer 2 closer from the central one (swimmer 1). The dipolar flow from swimmer

2 thus induces at the swimmer 1 location a velocity of higher intensity (red arrow) than the flow from

swimmer 3 (blue arrow), resulting in a net velocity along −y. Second, δP along y makes swimmer 4

induce an additional velocity perturbation, also along −y (green arrow), resulting in a total net flow δu

along −y. As swimmer 1 tends to reorient against δu according to ṗ = ν(I− pp) ·δu = νδu+O(ε3) with

ν < 0, the initial δP increases with time. Since swimmer 1 now tends to self-propel along y, the initially

higher concentration in this region increases, triggering the growth of δc and explaining the coupling of

c̃ and P̃ at this scale of finite k/ν ratios. Note that the exact same argument with ν > 0 confirms that

large-tails are stable to such waves.

FIG. 2.4: Instability mechanism of a large-head nearly aligned suspension. Short wavelength, perpendicular and

opposite phase perturbations in concentration and polarization δc, δP result in a net flow for the central swimmer

(1), which tends to reorient against it, increasing δP and hence δc.

Solving the eigenvalue problem numerically enables us to gain more insight into the behavior of the

system under more general perturbations (k 6= 0 or θ 6= π/2) when simple physical considerations are

lacking. Fig. 2.5a shows the positive real growth rate with respect to θ for various k, while Fig. 2.5b shows

it with respect to k for various θ (here ν = −1). They first show that small wavelength perturbations grow

faster, suggesting a small-scale destruction of this ordered state (recall that a maximum for α = vsα
′−k2D

is actually expected for finite D because of the superimposed ∼ −k2 parabolic behavior). These figures

3Keep in mind that the continuum approximation and the dilute limite require that λ� a, hence k/ν � 1.

23



0.0

0.1

0.2

0.3

0.4

0.5

R
e(
α
′ )

0 1 2 3 4 5

k

θ = π/2
θ = π/3
θ = π/4
θ = π/8

(a)
0.0

0.1

0.2

0.3

0.4

0.5

R
e(
α
′ )

0 π/4 π/2 3π/4 π

θ

k = 0
k = 1
k = 5

(b)
0

π
4

π
2

θ

0-5-10-15-20-25
ν

k = 0
k = 1
k = 5(d)

0

1

2

3

4

5

R
e(
α
′ )

(c)

FIG. 2.5: Instability of aligned large-head swimmers. (a) Re(α′) as a function of k for various θ and (b) as a

function of θ for various k. Parameters used: ν = −1, f = H̄ = 0.2, H̃ = 0. (c) Maximum Re(α′) as a function

of ν and (d) angle θ at which it is attained (same f, H̄, H̃ used).

also prove that for k 6= 0, the system may indeed be most unstable to non-perpendicular perturbations

(note the symmetry about π/2). Fig. 2.5c shows the maximum Re(α′) as a function of ν for various k and

Fig. 2.5d the angle θ at which it is attained. We see that θ ≈ 3π/8 is the most unstable angle for ν → 0,

whereas π/2 becomes most unstable for ν < −βk, where we found that β is a decreasing function of H̄

(here β ≈ 4.5). More interestingly, we notice in Fig. 2.5c that α′ converges very fast to the −fν limit

found in Eq. (2.62). This means that even when the maximum growth rate is not attained at π/2, the

π/2 value derived analytically remains an excellent approximation. The analysis further revealed that

the unstable complex modes generally combine concentration and polarization. Eventually, we found

that |Im(α′)| is maximum for θ ≈ 0 perturbations (the most stable ones) but that its value remains large

everywhere (except for θ ≈ π/2 where Im(α′) = 0). We thus expect every θ 6= π/2 instabilities to give

rise to travelling waves.

2.3.5 Large-tail instability

Although the previous analytical limits (Eq. (2.61) for k = 0 and Eq. (2.62) for θ = π/2) do not suggest

instability for ν > 0, numerical solutions revealed that suspensions of large-tails are unstable to certain

perturbations. Fig. 2.6a and Fig. 2.6b show that small scale fluctuations are again the most unstable,

although they are characterized by much lower growth rates than large-heads (see in particular Fig. 2.6c,

where the scale of Re(α′) has been made identical to that of Fig. 2.5c for comparison). Note that in

contrast with the previous case where θ ≈ π/2 fluctuations were dominant, these systems are surprisingly

most sensitive to angles π/8 < θ < π/4, as shown in Fig. 2.5d. In addition, as in the large-head case,

this instability always couples concentration and polarization and Im(α′) 6= 0 for θ 6= π/2 perturbations,

hence we predict travelling waves. Eventually, we found that the qualitative features of theses results are

relatively independent of f , H̄ and H̃.

To conclude this chapter, we should remember that the whole analysis did not emphasize the effect

24



0.0

0.1

0.2

0.3

0.4

0.5
R
e(
α
′ )

0 1 2 3 4 5

k

θ = π/2
θ = π/4
θ = π/8

(a)

0.0

0.1

0.2

0.3

0.4

0.5

R
e(
α
′ )

0 π/4 π/2 3π/4 π

θ

k = 0
k = 1
k = 5

(b)

0

π
4

π
2

θ

0 5 10 15 20 25
ν

(d)

0

1

2

3

4

5

R
e(
α
′ )

k = 0
k = 1
k = 5

(c)

FIG. 2.6: Instability of aligned large-tail swimmers. (a) Re(α′) as a function of k for various θ and (b) as a

function of θ for various k. Parameters used: ν = 1, f = H̄ = 0.1, H̃ = 0. (c) Maximum Re(α′) as a function of

ν and (d) angle θ at which it is attained (same f, H̄, H̃ used).

of the anisotropy of swimmers (µ̃, ν′). A previous stability analysis of the aligned base state focused on

the role of ν′ and concluded that this parameter alone can also cause small scale instability near the

θ = π/2 region [18]. We therefore conclude that both anisotropy4 and polarity destabilize this ordered

state, probably at the smallest scale of the system, i.e. the scale of inter-particle distance. It is therefore

obvious that no natural system can actually reach this homogeneous and aligned state on a large scale,

which is the reason why we shall not investigate this case further. By constrast, we concluded in the

previous section that isotropic large-head suspensions were unstable to long-wavelength perturbations that

is, large-scale collective motion is predicted only above a critical system size. Obviously, this conclusion is

of paramount interest for biological colonies and this explains why the next chapter is exclusively devoted

to the elucidation of such phenomena by means of numerical simulation.

4Since ν′ appears only with µ̃ in H̃ = f(µ̃+ 2ν′) we consider that these two anisotropic parameters have the same effect.
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Chapter 3

Nonlinear numerical simulations

3.1 Direct particle simulation method

To start with, let us introduce the basic features of the direct particle simulaion code used troughout this

chapter to investigate the long-time nonlinear dynamics of confined suspensions.

The code we developed aims at studying the time evolution of a 2D, initially isotropic suspension of po-

lar swimmers. For this purpose, the program handles the position Rn
i , orientation pni and dipole moment

σni of M particles (i = 1, ...,M refers to particles while n = 1, ..., N denotes the time step). Positions are

randomly initialized following a uniform law: R0
xi ∼ U([−LX/2, LX/2]) and R0

yi ∼ U([−LY/2, LY/2)] in

the computational domain (a rectangular box of dimensions LX,LY ). Similarly, orientation vectors are

randomized using the θ angle to guarantee anisotropy: (p0xi, p
0
yi) = (cos θ0i , sin θ

0
i ) where θ0i ∼ U([0, 2π]))

and dipole moments are initialized as follows: σ0
i = σvsp

0
i . Most simulations were carried out in a

square box (LX = LY = L) assuming periodic boundary conditions, to model an infinite system with no

boundary in x or y. This classical type of boundary conditions naturally requires the introduction of a

set of image particles (hereafter referred to as periodic images). As illustrated in Fig. 3.1, these Nimg

images are simply deduced from the M actual particles by ±L translations along x and y.

More specifically, at each time step n, the fluid flow at the location of a given particle i is computed by

summing all the individual dipolar interactions due to the M −1 other particles inside the computational

box and all M [(2Nimg + 1)2 − 1] periodic images

u(Rn
i ) =

[ M∑

j=1
j 6=i

G(Rn
ij)

︸ ︷︷ ︸
M − 1 real particles

+

M∑

j=1

( Nimg∑

p=−Nimg

p 6=0

Nimg∑

q=−Nimg

q 6=0

G(Rn
ij + pLex + qLey)

)

︸ ︷︷ ︸
Nimg periodic images in x and y. Total: M [(2Nimg + 1)2 − 1].

]
· σnj , (3.1)

where ex, ey are the cartesian unit vectors, Rn
ij = Rn

i −Rn
j and the Green tensor G takes the following

form (see Eq. (1.3)):

G(R) =
1

2π|R|2
(

2
RR

|R|2
− I
)
. (3.2)
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FIG. 3.1: Image system for periodic BC in a square box of size L. M = 2 particles in the computational domain

[−L/2, L/2]2 (bold line) are represented with Nimg = 1 image in each direction located at (Rxi ± L,Ryi ± L).

Given u(Rn
i ), particle i is then advanced in time following the equations of motion of a single swimmer

immersed in an arbitrary flow field Eqs. (1.4a), (1.4b) using a fourth-order Runge-Kutta (RK4) time

marching scheme. Rotational diffusion is included by adding to the orientational dynamics ṗ the following

stochastic vector:
√

2DR/dt (I− pp)·n where dt is the time increment and ni ∼ N (0, 1) are two Gaussian-

distributed independent components. For relatively large values of DR (to overcome natural diffusion due

to interactions), we found the following relations for orientational and translation time autocorrelation:

1

N

M∑

i=1

pi(t) · pi(0) = exp(−DRt) and
1

N

M∑

i=1

|Ri(t)−Ri(0)|2 =
2v2s
DR

t = 4Dt, (3.3)

which can be shown to be in full agreement with their role of diffusion coefficients in the continuous 2D

Smoluchowski equation (more generally, these relations hold when t and 0 are replaced respectively by

t + τ and t for τ � 1). This equivalence of diffusion coefficients in both models will prove important

to compare simulation results with predictions from the kinetic model. Eventually, dipole moments are

updated as follows: σn+1
i = σ[Ṙn

i − u(Rn
i )]. Note that in this expression, both the particle velocity and

the fluid velocity are necessarily evaluated at time step n, which essentially results in approximating σn+1
i

by σni . Although this preserves the consistency of the scheme, we hope to control this source of error

with the excellent properties of the RK4 scheme (within each time step, u, Ṙ, ṗ are evaluated four times

and σ updated accordingly) and by setting a conservative time increment dt. We indeed choose dt such

that a particle swimming at speed vs during dt travels less that 10% of the average distance separating

two particles
√
L2/M : dt < L/(10vs

√
M).

Most simulations were typically carried out with Nimg = 200 images in each directions (x and y)

for greater accuracy, though convergence has been observed for lower values of Nimg. In theory, this

would require the computation of 4M [(2Nimg + 1)2 − 1] ≈ 6 × 105M interactions to get the velocity

at a single particle location (hence 6 × 105M2 at each time step). It follows that simulating systems
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with thousands of swimmers on a single-processor workstation is only possible provided that we use an

accelerated algorithm, which we shall briefly introduce. The general philosophy behind most accelerated

algorithms is to evaluate directly the largest interactions, and approximate the far-field ones. We applied

this idea to compute the sum of interactions due to particle j and all its images with particle i, using the

following algorithm:

• Search the closest particle to i among j and its first 8 images (inside all adjacent boxes, see Fig. 3.1).

In other words, find Rmin
ij , the vector Rij +pLex+ qLey of minimal length with (p, q) ∈ {−1, 0, 1}2

(see Fig. 3.2a). Compute directly G(Rmin
ij ) using Eq. (3.2).

• For all other (2Nimg + 1)2− 1 interactions {Rij + pLex + qLey | (p, q) ∈ [−Nimg, Nimg]2}\{Rmin
ij },

interpolate the corresponding far-field Green tensor at location Rmin
ij ∈ [−L/2, L/2]2, using the

following discrete tensor, precomputed on a grid:

Gmn =

Nimg∑

p=−Nimg

p 6=0

Nimg∑

q=−Nimg

q 6=0

G
(

(−L/2 +mdx+ pL)ex + (−L/2 + ndy + qL)ey

)
, (3.4)

with m,n = 0, 1, ..., Ngrid − 1 the grid point indices and dx = dy = L/(Ngrid − 1) the grid spacing

(see Fig. 3.2b). Note that the interaction due to Rmin
ij (p = q = 0) is precisely not included in this

sum.

• Sum both tensors and compute the dot product with σnj .

FIG. 3.2: Fast computing of far-field interaction between particle i and j. (a) Compute directly the interaction

with the closest particle from i (in this case, the bottom-left image (p, q) = (−1,−1)). (b) Approximate the Green

tensor due to other particles (p, q) ∈ [−Nimg, Nimg]\{(−1,−1)}: interpolate Gmn at Rmin
ij using grid values.

The benefit of this algorithm is that the far-field Green tensor Gmn need only be evaluated once at the

beginning of the program. At each RK4 stage and for each particle pair (i, j), the cost of summing over
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(2Nimg + 1)2 − 1 interactions is reduced to a simple bilinear interpolation, significantly enhancing the

performance of the code. In a word, although the complexity of our code unfortunately remains O(M2),

the implementation of this accelerated algorithm almost reduces computation time by a (constant) factor

of 4[(2Nimg + 1)2 − 1], i.e. typically 6 × 105 (for Nimg = 200), neglecting the one-time computation of

Gmn (less than 5 min for a very fine grid Ngrid = 250). Note that more complex strategies to evaluate

the slow-decaying Green tensor resulting from periodic images exist. To name one, the smooth particle-

mesh Ewald algorithm first introduced in molecular dynamics evaluates far-field contributions using a

fast-converging sum in the Fourier space and has been successfully applied to the sedimentation of fibers

with a O(M logM) complexity, a significant improvement [30].

3.2 Isotropic suspensions of large-heads

3.2.1 Transition to instability and comparison with linear theory

As we saw in the previous section, our direct particle algorithm enables us to fully control the diffusion

coefficients DR and D. Similarly, the signed Péclet number Pe = fνl and all other important dimen-

sionless parameters introduced in the linear stability analysis of the previous chapter may be defined in

particle simulations1. Since particles are randomly initialized in a square box of size L (diagonal length
√

2L), we consider that the smallest dimensionless wavenumber initially present is k′min = 2πl/
√

2L (re-

call l = vs/2DR). The simulations that we will present next were designed for direct comparison with

the linear analysis of Sec. 2.1, and more specifically, with the k′c vs. Pe predictions of Fig. 2.1b, i.e.

the threshold system size above which an homogeneous and isotropic suspension becomes unstable. For

this purpose, we held f , vs, DR as well as the mobility parameters µ‖ = µ⊥ = 1 and ν′ = 0 fixed. To

investigate the evolution of a given system size (or k′min), L was kept constant and ν < 0 (hence Pe)

was decreased until the first signs of collective motion2. As predicted by the linear analysis, instabilities

were found to occur only below a certain value of Pe and individual values of ν, f , vs, DR did not seem

to have much impact other than through the Pe ratio (for example, transition was observed roughly at

the same Pe even after halving f and doubling ν). The threshold value of Pe was then associated with

k′min, which should actually be thought of as a critical wavenumber k′c.

Before presenting and analyzing these results, let us discuss an issue encountered when trying to

compare continous and discrete models: the continuous notion of surface fraction is not univoquely

defined in a discrete model (see Fig. 3.3). A given f = σc0 = σ(M/L2) = 0.1 ratio may be either

achieved by taking a small number of large particles (Fig. 3.3a) or a larger number of smaller particles

(Fig. 3.3b). Since the latter choice is closer to the continuous assumptions, we expect it to be more

likely to yield comparable results. Unfortunately, a trade-off must be found due to limited computational

ressources: the continuous model only remains an approximation, since simulations handle a limited

number of particles. Concretely, in addition to f , one must specify which number of particles per unit

area M/L2 we use. When designing the simulations, we took M ≈ 1000 as the minimum total number

1We discuss in detail how to deal with the delicate case of the corrected surface fraction f in the next paragraph.
2The specific details of the instability and long-time behavior is treated extensively in Sec. 3.2.2.
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FIG. 3.3: Two systems with equal f = σM/L2 fraction. (a) Low M/L2 ratio: few particles with large-surface.

(b) High M/L2, closer from the continuum limit. Three M/L2 ratios were used in simulations in order to span a

variety system sizes L with constant f while keeping M in a restrictive range.

of particles to guarantee the quality of the results. On the other hand, due to the O(M2) complexity,

keeping a reasonable computing time (about one day) required that we set M ≈ 6000 as upper bound.

Investigating a range of system sizes L of one order of magnitude (to cover the k′c area of interest [0.1, 1])

with constant M/L2 and σ would require to vary M over two orders of magnitude, in contradiction with

the constraint M ∈ [1000, 6000]. We solved this issue by working with three different ratios: a coarse

M/L2 = 450 to investigate the 0.08 ≤ k′c ≤ 0.23 area (large boxes), M/L2 = 2500 for 0.23 ≤ k′c ≤ 0.53

and a very fine M/L2 = 10000 for smaller systems (0.53 ≤ k′c ≤ 1.06). For each series of simulations, no

less than six different values of k′c were tested, always with one overlapping value to test the agreement

between two consecutive ratios. The results presented in Fig. 3.4 required the analysis of dozens of

simulations and enable us to compare the transition to instability with theoretical predictions.
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FIG. 3.4: Transition to instability of a large-head isotropic suspension (f = H̄ = 0.2, H̃ = 0). At a given system

size (and minimal wavenumber k′c), the threshold value of Pe below which instability occurs in particle simulations

is compared with linear stability predictions. Three series of markers stand for different M/L2 ratios needed for

the whole k′c region. Error bars indicate uncertainty due to the testing of a limited number of Pe values.
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The first observation we make is that the numerical and theoretical results are of the same order of

magnitude. The decreasing trend (meaning greater stability for smaller systems) is obviously confirmed,

and the results even match with less than 100% of error. Note that this difference may not be explained by

the uncertainty resulting from the testing of a limited number of Pe values (error bars). The agreement

between both results may not seem impressive unless we recall that they result from very different

approaches: on one hand a linear stability analysis on a continuous kinetic model and on the other hand

a nonlinear direct particle simulation. In particular, let us emphasize the fact that random uniform initial

conditions on a few thousand of particles are far to induce only infinitesimal perturbations in the first

place; hence perfect agreement with the linear theory should not be expected. We further consider very

encouraging the fact that (i) different ”continuum approximations” (i.e. values of M/L2) do not seem

to have much influence, as shown by the results at k′c = 0.23 and 0.53 (where two different M/L2 where

used) and (ii) the dimensionless group of terms Pe = fνl seems to actually govern the instability (while

in particle simulation, a given Pe may be obtained by many combinations of independent parameters).

To conclude, the simulations confirm the fact that bulk suspensions of confined large-heads are unsta-

ble above a critical system size which mainly depends upon the Péclet number. They also highlight the

relevance of the kinetic model to make reasonable predictions and provide deep physical insight about

the behavior of such a complex system.

3.2.2 Unstable behavior and long-time dynamics

While the previous section focused on the first signs of transition from the isotropic and homogeneous

initial conditions, we now turn our attention to the specific description of the instability and long-time

dynamics revealed by particle simulations.

Fig. 3.5 summarizes the main features that have been systematically observed in unstable large-head

suspensions. The results presented here have been obtained using M = 5000 particles at a lower surface

fraction than what has been used in the previous section (about 1% instead of 10%, i.e. f = 0.02).

The box had a nondimensional size L/l = 14 (hence k′min = 0.317) and we set Pe = −2.2 (as can be

seen in Fig. 3.4, this is very near the transition which occured at Pe ≈ −1.8). Fig. 3.5a shows heavily

polarized density waves propagating mainly along the x direction from right to left. The time dependence

is made clear by a spatiotemporal plot of the longitudinal (y-averaged) concentration (or density) field,

deduced from the number of particle at a given position x (Fig. 3.5b). We see that initially small

perturbations in the concentration field are amplified in a strong wave, visible from the non-dimensional

time3 t′ = tDR = 30 (densities reach more than twice the average system density). A spatiotemporal

diagram of the global orientation θ = cos−1(p · ex) (Fig. 3.5c) further shows that the polarization of the

growing wave starts roughly at the same time: here θ ≈ −π rapidly becomes the preferred orientation in

the system, explaining the wave propagation in the −x direction. The growth of the global polarization

is more qualitatively measured in Fig. 3.5d, where we see that P = |〈p〉| =
√
〈px〉2 + 〈py〉2 increases

dramatically after t′ = 30 (here 〈·〉 denotes the average all particles 1/M
∑M
i=1). This figure also features

3As we focus here on stability, we non-dimensionalize the time the same way as we did for the growth rate α′ = α/DR.
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FIG. 3.5: Nonlinear dynamics of M = 5000 initially isotropic large-head swimmers for Pe = −2.2, f = 0.02, and

k′min = 0.317 (L/l = 14). (a) Snapshot of the particles at t′ = tDR = 42.7 showing the polarized density waves.

(b) Spatiotemporal diagram of the longitudinal concentration and (c) global orientation distribution (1 is system

average). (d) Norm of polarization P and nematic order Q. (e) Pair distribution function for the concentration

(1 is system average) and (f) the polarization (norm and direction) averaged between t′ = 35 and 55.

the nematic order parameter Q, or positive eigenvalue of the average nematic tensor 〈Q〉 = 〈pp − I/2〉
(note that 0 ≤ Q ≤ 1/2). The growth of this parameter reveals that waves tend to adopt a slight splay

shape (recall Fig. 1.4b), as could be qualitatively anticipated from the typical curvature observed in

Fig. 3.5a. Note that this instability characterized by travelling fluctuations in concentration, polarization

and, to a lesser extent, splay in medium-sized systems (slightly below the Pe transition) agrees remarkably

well with the predictions of the linear stability analysis (see Sec. 2.3.4). The next two plots represent pair
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distribution functions of the concentration (Fig. 3.5e) and polarization (Fig. 3.5f). They are computed

by considering a particle i and switching to its frame of reference such that the origin (x′, y′) = (0, 0) lies

at Ri. We then search over all j 6= i particles and assign to (x′, y′) a value proportional to the number

of particles lying around this point (1 is the average). Similarly, the pair polarization at (x′, y′) results

from the projection of all pj of particles lying near (x′, y′) on the reference pi. This whole procedure is

repeated in order to average over every particle i and give a meaningful picture of the correlations in the

system. The high pair concentration in a horizontal band observed in Fig. 3.5e (up to twice the system

mean value) means that most particles have many neighbors at their left and right side, while their

front and back region is depleted, in consistency with the notion of waves that emerged from previous

representations. Furthermore, the rather high norm (up to 0.3) of the pair polarization in the same band

(Fig. 3.5f) confirms the strong correlation of the particle orientations inside a wave. The direction of the

pair polarization (see the white arrows) further suggests that particles behind the wave tend to align (and

therefore swim) away from the wave, whereas particles located in front of the wave tend to swim against

it, which is bound to give rise to collisions.

In essence, polarization waves behave like a giant dipole (see the clear dipole pattern of the pair

polarization) attracting particles with opposite swimming direction at their front. This crucial observation

enables us to understand the formation of high density balls, visible in the spatiotemporal concentration

diagram Fig. 3.5b. We indeed notice from t′ ≈ 50 a highly concentrated region (at x ≈ 5) which, after

closer examination, may be shown to consist in a stable axisymmetric structure where particles lie on

a circle of finite radius, swimming toward the center and each particle being kept at constant location

by the repulsive flow of others. Fig. 3.6a shows the spatiotemporal concentration diagram of a similar

FIG. 3.6: (a) Spatiotemporal concentration for similar parameters used in Fig. 3.5, except M = 2500 and f = 0.2

showing the rapid formation of a large high-density ”ball” from a polarized wave. (b) Snapshots of particles and

velocity field illustrating the formation of such balls (c) Analytical model for the steady radius of such clusters.
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simulation, where the concentration has been increased by a factor of 10 (mean surface fraction is now

10%). We see that such balls can reach dramatic dimensions in that case, attracting most of the system’s

particles and destroying any propagating wave within a few seconds. We provide more details about

the early stages of the formation of such structures in Fig. 3.6b, where a few particles experiencing the

phenomenon of interest are plotted together with the flow they generate. First, particles with strongly

correlated orientation emerging from the instability described above (polarized density wave) behave like

a giant dipole, repelling particles at their tail and attracting them at the front (the apparent paradox

comes from the fact that large-heads align, and thus swim, against the flow). After many particles with

opposite orientation have joined the first wave, a circular structure rapidly emerges for reasons of greater

stability. A steady radius is attained, and the resulting ball generates a high positive diverging flow,

attracting all the surrounding particles towards its center, explaining the inescapable growth of such a

pattern. We now understand why the initially small ball of Fig. 3.5b strenghtens as it is being hit by the

main polarized wave at t′ = 55.

To provide more insight into the intuitive fact that systems of higher concentration form higher balls,

we analytically derived the steady state radius R of a single layer of particles evenly spaced around a

circle (see Fig. 3.6c). The calculations detailed in Appendix A yielded the surprisingly simple closed-

form solution R =
√
σ(M2 − 1)/24π, which may very well be approximated by R ≈ 0.115

√
σM , that is

such balls increase linearly in size with both the number of particles and their size (∼
√
σ). Numerical

simulations initializing particles on a circle of arbitrary radius confirmed the value of the equilibrium

radius and a simple analysis further suggested that the stability of such a circular structure increases

linearly with M . Note however that considering disk-shaped particles of area 2σ, the sum of the diameters

of particles M
√

2σ/π ≈ 0.80
√
σM always exceeds the perimeter of the circle 2π×0.115

√
σM ≈ 0.72

√
σM

by about 10%, causing overlapping. Unfortunately, the model we use for interactions based on the dilute

limit does not hold in that case and taking into account contacts would prevent R to take such a small

value. We nonetheless believe that the main conclusions of this analytical and numerical investigation

give valuable basis to explain that very dilute suspensions are prone to the formation of smaller, less

stable balls having less influence over the whole system which keeps exhibiting the original polarized

density wave pattern over relatively long times (as in Fig. 3.5). By contrast, since the balls in systems

of larger particles are larger in the first place, the diverging flow they create is felt in a larger fraction

of the system, explaining their faster growth and the emergence of quasi-stable multi-layered structures

(as in Fig. 3.6a). Let us emphasize again that the model upon which our theory and simulations rely

does not apply out of the dilute limit which explains why results in which such high-density areas become

dominant are highly questionable.

3.3 Isotropic suspensions of large-tails

In the previous section, we detailed the transition to instability and long-time dynamics observed in

large-head suspensions, and concluded that numerical results are strongly supported by the linear theory.

In this section, we show that although isotropic suspensions of large-tails have been proved to be linearly
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stable (see Sec. 2.3.4), simulations demonstrate that nonlinearities may quickly drive such a system away

from the base state and trigger fascinating large-scale dynamics.

Motivated by the relevance of the stability transition predictions for the Pe < −1 instability (see

Fig. 3.4), we start by a very similar thorough study of the Pe value for which a system characterized by

k′c shows the first signs of collective motion. The idea is to see whether or not large-tails are also prone

to long-wavelength instability (i.e. the growth rate increases with smaller k′). The results presented
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FIG. 3.7: Transition to instability of large-tail suspensions (f = 0.2). For a given system size and critical

wavenumber k′c, collective motion is found only above a certain Pe. Error bars and M/L2 ratios are as in Fig. 3.4.

in Fig. 3.7 indeed confirm our conjectures: this large-tail nonlinear instability shares these very special

characteristics with the large-head one. The transition Pe value indeed increases with k′c, meaning

that instability is found only above a critical system size. We also note that for the range of system

sizes considered, the Pe values are of the same order of magnitude (in absolute value) than the ones

causing large-head collective motion. Recalling the physical arguments and the meaning of Pe as a self-

advection/diffusion ratio, this provides evidence for the idea that both instability mechanisms ultimately

stem from the combination of dipolar interactions and polar shape of particles.

We now turn to the specific description of the dynamics observed in particle simulations. The results

of Fig. 3.8 were obtained for M = 3600 particles in a box of size L/l = 17 (k′c = 0.26) with a mean area

fraction of 10%. The Péclet number used here (Pe = 3.7) is slightly above the transition (in this case,

Pe ≈ 2.2, see Fig. 3.7). As shown in Fig. 3.8a, such systems typically form two counter-rotating vortices.

This observation is more quantitatively supported by Fig. 3.8f and Fig. 3.8g, showing respectively the pair

concentration and polarization introduced previously. We see that particles are much more likely to have

neighbors swimming at their front and back (with which they have strongly correlated orientation) than at

their sides (where little correlation is found). As in the previous section, the spatiotemporal longitudinal
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FIG. 3.8: Nonlinear dynamics of M = 3600 initially isotropic large-tail swimmers for Pe = 3.7, σc0 = H̄ = 0.2,

H̃ = 0 and k′min = 0.26 (L/l = 17). (a) Snapshot of two counter-rotating vortices at t′ = 92. (b) Spatio-temporal

plot of the longitudinal concentration field and (c) the global orientation distribution showing the quasi-periodic

formation and break-up of patterns. (d) Global and local polar and (e) nematic order. (f) Pair distribution

function for the concentration and (g) the polarization (norm and direction) averaged over the last 7 time units.

concentration (Fig. 3.8b) and orientation (Fig. 3.8c) uncover the time dependence of this interesting

dynamics and reveal that the system essentially behaves in a quasi-periodic fashion. Specifically, we

observe alternance between two kinds of steady vortices: (i) one with clear concentration fluctuations in

x (corresponding the the circular depleted regions) and a preferred direction θ ≈ ±π/2 (see for instance

the snapshot Fig. 3.8a at t′ = 92) and (ii) another with rather vertical concentration patterns (not

represented here) and a preferred direction θ ≈ ±π. More insight into the quasi-periodic formation of
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vertical and horizontal vortices may be gained by studying the time evolution of the polar and nematic

order parameters (Fig. 3.8d and Fig. 3.8e respectively). In addition to the norm of the global polarization

P and the positive eigenvalue of the nematic tensor Q introduced previously, we focus here on local

parameters PK , QK , where the averaging process is first made within K smaller boxes of linear size

L/
√
K: PK = 1/K

∑K
k=1 |〈p〉k|, where 〈·〉k denotes the average over the particles located inside the

k-th box (QK is obtained in a similar way). Unlike the global polarization P = 0, we see that P4, P16

reach very high values during the vortex structures, confirming the fact that particles are locally heavily

polarized. The values of the nematic parameters further prove that the particles exhibit splay and bend

alignment at all scales, as expected by the observed pattern. Eventually, the dramatic decrease of P4

and Q observed during the change between the two vortex structures is interpreted as the consequence

of the break-down of large-scale structures (of lengthscale L/2 for the polarization and L for the nematic

alignment, in consistency with the counter-rotating vortex structure). During these transition phases, the

values of P16, Q4, Q16 prove that smaller-scales structures with relatively high orientational or nematic

order are however still present (of lengthscale L/4 for P and L/2 for Q).

3.4 Density waves in a narrow channel with external flow

In Sec. 2.2 we showed that spatially uniform suspensions subject to a constant external flow U0 = U0ex

adopt a polar stationnary state Ψ(x,p) = c0Ψ0(θ), where θ = cos−1(p · ex) and Ψ0(θ) depends on the

nondimensional flow strength ξ = νU0/DR (see Eq. (2.31)). We demonstrated that large-heads were

in general significantly stabilized by this flow, and based on our last conclusions, we may assume a

similar consequence for large-tails. This motivates the study of the dynamics of such quasi-aligned active

suspensions in a narrow channel. Keeping in mind recent results reporting 1D Burgers density waves in

droplet ensembles advected in a 1D channel [17, 18, 19], this section seeks to investigate the quasi-one-

dimensional (q1D) density behavior of polar, active suspensions in a narrow channel of length L, rigidly

bounded in y with width W � L.

3.4.1 Quasi-one-dimensional continuum model

To start with, insight may be gained by deriving a q1D model based on the continuous kinetic model and

mean-field description used throughout this work. For this purpose, we make the following self-consistent

set of assumptions:

• constant, uniform external flow along x: U0ex, and a polar, stable base state for the orientation

distribution: Ψ0(θ) = A exp(ξ cos θ), with A such that
∫ 2π

0
Ψ0(θ) dθ = 1,

• one-dimensionality: we assume a sufficiently narrow channel such that transversal effects and vari-

ations may be neglected: Ψ(x, y, θ, t) = c(x, t)Ψ0(θ) and u(x, y, t) = u(x, t)ex,

• confinement in y is not strong enough to significantly change the nature of the interactions: W � a.

This avoids us the tedious analytical treatement of the influence of boundaries.
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We now aim at deriving a 1D evolution equation for the concentration field c(x, t). Since anisotropy

itself does not play any relevant role here, we set µ⊥ = µ‖ = 1 and ν′ = 0. Integrating the continuity

equation Eq. (1.7) with respect to θ and plugging in our ansätze yields

∂c

∂t
= − ∂

∂x
(vsP0c+ cu) +D

∂2c

∂x2
. (3.5)

where 0 < P0 < 1 is the norm of the polarization given by Eq. (2.32). To decouple the velocity from

Eq. (3.5) we use the divergence of the velocity Eq. (2.6) together with the dipolar solution Eq. (1.3)

(assumed valid despite the confinement in y) and it follows that

∂u

∂x
= −σvsP0

∂c

∂x
and u = −σvsP0c+ U0. (3.6)

Combining Eqs. (3.5), (3.6) yields the following conservation law:

∂c

∂t
+
(
U0 + vsP0(1− 2σc)

) ∂c
∂x

= D
∂2c

∂x2
. (3.7)

We can alternatively write Eq. (3.7) in conservative form

∂c

∂t
+
∂q

∂x
= D

∂2c

∂x2
with the flux q =

(
U0 + vsP0(1− σc)

)
c. (3.8)

This first-order, hyperbolic, quasilinear equation is commonly used as a simple 1D model for traffic flow

behavior [31]. The prefactor vsP0(1 − σc) in the flux must be interpreted as an Eulerian concentration

dependent velocity. The single-swimmer Lagrangian effective velocity vsP0 along x is renormalized by

interactions: it is maximal where c(x) = 0 and decays linearly with c to reach 0 where c(x) = 1/σ (the

maximal concentration). Wave solutions of this equation are characterized by the emergence of a shock

at the tail and a rarefaction wave at the front. The aerial view of a typical traffic jam gives an intuitive

and familiar illustration of both phenomena. These many-body systems of strongly interacting vehicles

prone to pattern formation indeed share similarities with active fluids. Their complex physical behavior

has been studied by various nonlinear wave equations, including Eq. (3.7), which remains the simplest

model accounting for density waves (for a review see [32]).

To conclude, our q1D kinetic model predicts density waves which strongly contrast with the ones pre-

viously observed in driven droplets colonies, characterized by increasing velocity with local concentration

[17, 19] and explained by the influence of boundaries in y, which we precisely neglected here. The new

and opposite behavior we predict indeed genuinely arises from self-propulsion (vs is in factor of (1− σc)
in q), which explains why it has not been previously observed in confined but passive droplet colonies.

3.4.2 Comparison with particle simulations

We shall now see if the predicted behavior is actually confirmed by particle simulations. To carry out

simulations in this new geometry, we decided to take into account the influence of the boundaries on

interactions, neglected by necessity in the q1D continuum model but which give rise to radically different

density waves in the passive case. Whereas the no-slip boundary condition at y = ±W/2 cannot be

satisfied (the velocity is assumed to be potential), non-penetration must certainly hold and its enforcement
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required a new system of images and modifications in the accelerated algorithm that we describe in

Appendix B.
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FIG. 3.9: Density waves in a narrow channel with external flow. Comparison of particle simulation (PS) (M = 4000

particles, σc0 = 0.1, ξ = +4, L/l = 30, W/l = 3) and FD solution of Eq. (3.8) (continuum model, CM).

(a) Polarization P rapidly reaching P0 (polar stable state). (b) Orientation distributions (PS is averaged over

t′ = tDR ∈ [5, 25] interval). (c) Spatiotemporal y-averaged concentrations showing rarefaction wave at the

front and shock at the tail. For clarity, normalization is made such that the average concentration is 1. (d)

Concentration profiles at selected times, and (e) corresponding PS snapshots (particles are magnified).

The theoretical predictions have been tested using M = 4000 large-tail particles in a channel of aspect

ratio L/W = 10. Particles are initially isotropic and concentrated in a narrow band x ∈ [−L/8, L/8],

simulating the initial state of a prototypical traffic jam (an average surface fraction of 5% has been

chosen so that even the initial state may be considered dilute). The strength of the external flow used

ξ = 4 enabled very fast convergence of this initially isotropic system to the stable polar state, as shown

in Fig. 3.9a (P quickly reaches P0) and Fig. 3.9b (for Ψ0(θ)), allowing for direct comparison with the

conservation law derived above. Fig. 3.9c and Fig. 3.9d indeed show the time evolution of the longitudinal

(y-averaged) concentration profile c(x, t) obtained in the particle simulation (PS) and in the continuum
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model (CM), by a reference finite-difference solution of Eq. (3.8).

The striking traffic flow behavior observed in simulations characterized by rarefaction at the front and

shock at the tail (see also the snapshots in Fig. 3.9e) agrees very well with the results of the continuum

model, which neglected the influence of confinement on interactions. This demonstrates that, at least

in these conditions of weak confinement (aspect ratio of the domain is 10 and W � a), the effects of

self-propulsion on the global traffic flow dynamics significantly overweigh the influence of the channel

boundaries, which might only be perceptible in passive suspensions. Interestingly, the observed behavior

does not seem to depend much upon the rather perturbed initial concentration profile resulting from

random initialization of particles (see Fig. 3.9d), confering a relative generality to this result. We however

note that the density wave tends to propagate with higher phase speed and lower diffusion than expected

by the q1D model. In particular, the steep gradient at the tail seems much less aftected by diffusion than

the rest of the wave.

One possible explanation for the higher phase speed might be the role of boundaries, possibly through

a similar mechanism that resulted in a positive local coupling of velocity and concentration in the case of

driven droplets (see [17] for details). The fact that this coupling is precisely not observed here indicates

that this conjecture needs a more thorough analysis. We would like to conclude this section with a

more satisfactory, although purely qualitative, explanation for the space-dependent diffusion observed.

Recall from Sec. 1.4 that the D = v2s/2DR approximation was obtained by neglecting diffusion due to

hydrodynamic interactions and assuming an elementary isotropic diffusion mechanism. The superposition

of a external flow along x resulting in polar alignment clearly breaks isotropy and makes translational

diffusion much more likely to occurs in the direction of the flow, where particles have a net self-propulsion

velocity vsP0, explaining the low −x diffusion at the tail and the lasting steep gradient. We are very

confident in the fact that improvements of the q1D diffusion model may account more quantitatively for

this phenomena.
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Conclusions and directions for future

work

In this work, we have considered various problems in which collective dynamics and pattern formation

spontaneously arise in suspensions of swimming organisms as a consequence of individual hydrodynamic

interactions. Motivated by the complex behavior reported in unbounded bulk suspensions, we focused

on the influence of rigid confining boundaries, known to change the nature of interactions and for which

little is known. The approach followed has consisted in investigating a few systems of biological relevance,

by means of theory and numerical discrete particle simulation.

In Chapter 2, we have used a mean-field continuum kinetic model based on a conservation equation for

the probability distribution of particle positions and orientations, coupled to the Stokes equations for the

fluid flow, with a modified incompressibility term arising from the relative velocity of swimmers with the

background flow. We first performed a linear analysis of the stability of an isotropic confined suspension,

the most relevant problem in the context of thin microbial colonies and other biologically active films.

We confirmed the previous result that large-head organisms are subject to a long-wavelength generic

instability, and our analysis provided the first detailed description of the resulting large-scale dynamics

and wavenumber dependence. We demonstrated that systems larger than a threshold size were subject

to propagating polarized density waves and discussed the influence of a number of parameters on the

transition criterion. We then extended this analysis to investigate the influence of a constant external

flow, which has been found to stabilize large-heads by controlling their orientation. We finally addressed

the linear stability of a suspension of aligned swimmers and explained that colonies of both large-heads

and large-tail experience short-wavelength instabilities. We concluded that local alignment cannot even

be reached at the smallest scale of the system, meaning that this base state had no practical relevance.

In Chapter 3, we used an efficient direct particle simulation algorithm to simulate the long-time dy-

namics of confined isotropic suspensions of thousands of swimmers. Simulations of large-heads successfully

captured the polarized density waves predicted by our linear theory and we found good agreement with

the stability criterion on the system size. We then discovered that apart from very dilute systems, this

instability is typically followed by the formation of very dense, stable circular structures with converging

particles. Combining long-time nonlinear numerical results, an analytical solution for the equilibrium

shape of these clusters and insightful physical arguments, we elucidated the mechanisms behind the
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emergence and growth of these interesting patterns. We then investigated the nonlinear dynamics of

large-tails colonies and revealed a similar long-wavelength instability that had not been predicted by the

linear analysis. We captured the salient features of this complex and fascinating dynamics including the

quasi-periodic formation and break-down of large-scale counter-rotating vortices. Finally, motivated by

our linear results, we shed light on the dynamics of swimmers subject to a stabilizing external flow in a

narrow channel, a situation of practical relevance enabling simple analytical treatment. Using a quasi-

one-dimensional kinetic model, we demonstrated that individual self-propulsion was significantly rescaled

by interactions, resulting in a nonlinear traffic flow equation for the Eulerian particle density owing to the

local coupling between velocity and concentration. Simulations confirmed the predicted shock formation

and rarefaction wave in a typical traffic jam problem.

Although this work has focused on a few model problems, we believe that the physical mechanisms

we identified have broader implications for various phenomena in the fields of complex fluids, soft-matter

and many-body physics. As demonstrated throughout this work, confined active suspensions exhibit

rich dynamics while being exceptionnally well-suited for analytical and computational investigation. The

linearity of the flow equations and the low dimensionality of the system indeed enabled extensive theo-

retical treatment and the relative fast decay of the interactions with respect to the system dimensionality

allowed for the direct numerical simulation of large systems at no cost using very simple algorithms.

For these reasons, we are convinced that further study of confined living fluids could pave the way for

a better understanding of how the coupling of a large number of degrees of freedom by long-ranged in-

teractions translates into complex dynamics and pattern formation. In this respect, and since progress

in understanding the dynamics of swimming microorganisms is also of paramount interest in biological,

ecological, industrial or medical applications, we shall give a few directions to extend this work in the

hope of describing more faithfully some phenomena observed in experiments.

First, further efforts to elucidate the interesting traffic flow behavior of swimming organisms in very

narrow channels could concentrate on the influence of boundaries on interactions. In addition, improve-

ments in its theoretical description could also include anisotropic diffusion, which takes place when the

symmetry is broken by an imposed flow. More generally, all the problems we tackled in this work in-

volved dilute suspensions, and although our simple models based on the mean- and far-field description

of hydrodynamic interactions were sufficient to capture interesting behavior, we shall emphasize that

the modeling of more concentrated suspensions probably remains the greatest challenge. In the case of

initially dilute large-heads, we showed for example that long-time dynamics was characterized by the

formation of much higher-density structures, poorly described by our model. To avoid the overlapping of

particles in our simulations, we attempted to include a hard-sphere contact algorithm, which resulted in

the absence of any collective motion, certainly because of the too basic ad-hoc treatment of the particle

orientations during collisions. Furthermore, numerical evidence suggests that steric interactions alone

can give rise to coherent structures [33]. Motivated by a recent successful attempt in 3D [13], extending

our model to include steric interactions or near-field hydrodynamic effects could enable us to critically

assess the relative roles of hydrodynamic vs steric interactions.
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Appendix A

Steady state of swimming particles

distributed around a circle

In this appendix, we investigate the case of a collection of N particles, uniformly distributed at locations

Ri, i = 1, ..., N around a circle centered at the origin and oriented toward the center pi = −Ri/|Ri|, as

sketched on Fig. A.1. The objective is to derive the steady state radius R of the circle.

We start by using the equation of motion for the position of a self-propelled particle in confined ge-

ometries Eq. (1.4a), since the steadiness of the orientations pi is automatically satisfied given te geometry

of the problem. Assuming that µ⊥ = µ‖ = 1 for simplicity, Eq. (1.4a) reduces to

Ṙi = vspi +

N∑

j=1
j 6=i

ud(Ri|Rj ,σj) = 0 for all i = 1, ..., N, (A.1)

with σj = σ[Ṙj − u(Rj)] = σvspj . As sketched in Fig. A.1, the symmetry of the problem makes all

particles equivalent, such that we can focus on any arbitrary particle, for example i = N . Eq. (A.1)

therefore reduces to a single vector equation for ṘN , which, recalling Eq. (1.3), takes the form

N−1∑

j=1

1

2π|RNj |2
(2R̂NjR̂Nj − I) · pj = − 1

σ
pN , (A.2)

where RNj = RN−Rj and R̂Nj = RNj/|RNj |. Assuming that pN = ey as in Fig. A.1, and by symmetry

of the dipolar flows, all x components cancel out and Eq. (A.2) reduces to a single algebraic equation. Let

us now distinguish between two cases, depending on whether the number of particles is odd N = 2n− 1

or even N = 2n. Based on previous symmetry considerations, the odd case requires a sum over n − 1

particles (see the blue particles on the right half of the circle i = 1, 2 in Fig. A.1), whereas the even case

must include the additionnal contribution of particle n (see the green particle i = 3), whose specificity is

to lie exactly at the opposite of particle N (the red particle). We are therefore able to formally restate
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FIG. A.1: N = 6 particles evenly spaced around a circle and swimming toward its center O. The equilibrium

radius R is computed by summing the interactions of the blue (if N is odd) or blue and green (if N is even)

particles at the red particle’s location and cancelling its velocity ṘN

Eq. (A.2) as

2

n−1∑

j=1

1

2π|RNj |2
(2R̂NjR̂Nj − I) · pj · ey

︸ ︷︷ ︸
1

= − 1

σ
if N = 2n− 1,(A.3)

2

n−1∑

j=1

1

2π|RNj |2
(2R̂NjR̂Nj − I) · pj · ey

︸ ︷︷ ︸
1

+
1

2π|RNn|2
(2R̂NnR̂Nn − I) · pn · ey

︸ ︷︷ ︸
2

= − 1

σ
if N = 2n. (A.4)

Using the angles θj = 2πj/N sketched in Fig. A.1, it straightforward to show that RNj = −R (sin θj , 1−
cos θj) and pj = −(sin θj , cos θj). Basic trigonometric and matrix manipulations yield

1

2π|RNj |2
(2R̂NjR̂Nj − I) · pj · ey =

−1

4πR2(1− cos θj)
, (A.5)

for any j = 1, ..., N − 1. This will be used for j = 1, ..., n − 1 (term 1) and note that in the particular

case j = n (term 2) it reduces to −1/8πR2. It follows that Eqs. (A.3), (A.4) simplify to

n−1∑

j=1

1

1− cos θj
=

2πR2

σ
if N = 2n− 1, (A.6)

n−1∑

j=1

1

1− cos θj
+

1

4
=

2πR2

σ
if N = 2n. (A.7)

Solving Eqs. (A.6), (A.7) requires that we evaluate the following sums, respectively

S1
n =

n−1∑

j=1

1

1− cos
(

2πj
2n−1

) and S2
n =

n−1∑

j=1

1

1− cos
(
πj
n

) , (A.8)
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Computing the first few terms enabled us to guess empirically the general form of each sum, which is

surprisingly simple. It could then be proved using mathematical induction that

S1
n =

1

3
(n2 − n) =

1

12
(N2 − 1) and S2

n =
1

3
(n2 − 1) =

1

12
(N2 − 1)− 1

4
, (A.9)

recalling the fact that N = 2n− 1 for S1
n and N = 2n for S2

n. Eventually, Eqs. (A.6), (A.7) both reduce

to the exact same equation1

N2 − 1

12
=

2πR2

σ
, (A.10)

from which we deduce the steady state radius R that we seek

R =

√
(N2 − 1)σ

24π
. (A.11)

This may be well approximated by the following linear dependence:

R ≈ 0.115
√
σN, (A.12)

with less than 3% error for N > 3 and less than 1% for N > 7. We conclude that the equilibrium radius

increases linearly with the particle size
√
σ and the number of particles N .

1That led us to think that treating the odd and even case separately might not be necessary and that summing over all

N − 1 particles directly might be possible.
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Appendix B

Image system for simulations in a

narrow channel

In this appendix, we explain how the non-penetration boundary condition at the walls of a narrow channel

have been enforced in the numerical simulations described in Sec. 3.4.

To start with, Fig. B.1a shows how non-penetration modifies the flow generated by a swimmer in

the vicinity of the wall. To be specific, let us consider a particle with orientation p located at y, at a

distance δ from a confining wall as sketched in Fig. B.1b. Cancelling the normal component of the dipolar

flow induced by its motion requires an image particle at the same distance on the other side of the wall

(y − 2δ), with orientation p∗ = (px,−py), i.e. with angle −θ (see Fig. B.1b). By doing that, we however

induced a non-zero velocity through the virtual wall lying at y = −W/2−W , which we cancel using the

exact same strategy: we add an image of orientation (p∗)∗ = p, located at y − 2W . Carrying out this

method of reflection, we show that two distinct series of images are needed in the y direction:

• a set of symmetric images with orientation p∗ at locations y ± 2nW − 2δ (for physical particles

located at y < 0, as in Fig. B.1a) or y ± 2nW + 2δ (for y > 0),

• a set of periodic images with orientation p at locations y ± 2nW .

In the x direction, the usual periodic boundary conditions appropriate for an infinitely long canal require

the usual set of periodic images at locations x ± mL for each image introduced in y. The accelerated

algorithm presented in Sec. 3.1 has been modified to implement this new type of boundary conditions. To

compute the interaction due to particle j on particle i, we now not only compute directly the interaction

due to the closest periodic image of j (vector Rmin
ij ), but also the one due its closest symmetric image,

which can potentially be very close to i if both i and j lie near the same wall (see Fig. B.1c). The far-

field contributions due to all other particles is then approximated using a discrete Green tensor, whose

pre-calculation at the beginning requires special care due to the combination of both types of images.

Without entering into technical details, let us mention that a minimum of two discrete Green tensors are

actually needed in that case.
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FIG. B.1: (a) Dipolar flow generated by a swimmer is modified near a wall to guarantee non-peneration (field

computed from simulations). (b) Image system in a narrow channel of width W for a particle located at a distance

δ of the lower wall. A series of periodic images at y ± 2nW and a series of symmetric images with appropriate

orientation at y± 2nW − 2δ are included the y direction. In x, periodic images for all of these at x±mL must be

added. (c) Interactions at i due to the two closest images of j (periodic and symmetric) are directly computed.
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