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PROBLEM

• Diapycnal mixing generated by breaking
of internal tides is crucial for ocean circu-
lation and needs to be parameterized

• Dissipation currently parameterized as

ε(x, y, z) = q E0(x, y)F (z)

◦ ε . . . tidal energy dissipation
◦ E0 . . . energy conversion at seafloor
◦ q . . . local fraction of dissipation
◦ F . . . vertical structure

∫H
0
F (z)dz = 1

• But q, F vary in space (x, y) and the ocean
is sensitive to this mixing inhomogeneity

• Small-scale abyssal hills, unresolved by
satellite altimetry < O(30 km), contribute
to this inhomogeneity... but how much?

Objective: maps of q(x,y) and
F(x,y, z) to quantify the impact of
unresolved topography on mixing

METHOD: WAVE SATURATION

• Unresolved topography described statisti-
cally by Goff-Arbic spectrum

• Random topography samples generated,
constrained by 1/4◦×1/4◦ spectrum maps

Generation of synthetic topographies at ∼ 100 m resolution

• Internal tide computed by linear theory
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• Instability when isopycnals overturns:

∂z(b̄+ b′) = N2
[
1−Re{A(x, z) e−iω0t}

]
< 0

• Saturation: force |A(x, z)| ≤ 1 (nonlinear)
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RESULTS: 3D STRUCTURE OF TIDAL DISSIPATION

Horizontal: q(x,y)

• The fraction of energy dissipated q is
highly inhomogeneous in space

• Highest values q = 60−90%, mostly above
Southern-Hemisphere ridges
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Local fraction q of energy dissipated from bottom to surface

• High local dissipation even when rescaled
by large-scale, satellite-resolved energy

qtotal = qE0

E0+E
large scale
0
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Rough estimate of the local fraction of total energy dissipated

Vertical: F(x,y, z)

• Best collapse for diapycnal diffusivity
Kρ(z

∗) ∝ F/N2 with WKB-scaled height
z∗ ∝

∫ z
0

√
N2(z′)− ω2 dz′:

◦ exponential decay (∼ 70% of energy)
◦ hump: interior mixing (∼ 30%)

Collapse of O(105) profiles into two families

• Exponential decay scale Kρ ∝ e−z
∗/z∗0 is

also inhomogeneous in space (x, y)
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APPLICATION: PARAMETERIZATIONS OF TIDAL MIXING

• q(x, y) and Kρ(x, y, z) can be empirically
predicted based only on linear wave rms
amplitude at the bottom Arms(x, y, 0):

◦ qapprox = 87
[
1− e−4(Arms−0.1)]%

◦ Kρ exponential decay for Arms > 0.4,
hump otherwise

◦ z∗ approx
0 = 440√

Arms−0.3 m
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qapprox computed with Arms, in good agreement with q

MORE DETAILS
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KEY POINTS

• Dissipation of internal tides
above unresolved abyssal hills
< O(30km) is inhomogeneous

• Interplay of waves and ocean
stratification can create high inte-
rior mixing (hump profiles)

• 3D dissipation can be approx-
imated only using topography
spectrum and forcing at seafloor


