

Experimental properties of continuously-forced, shear-driven, stratified turbulence

Adrien Lefauve, Paul Linden, Stuart Dalziel + "The STAMP team"

Experimental measurements

u, *v*, *w* and ρ data at vector resolution $400 \times 30 \times 100 \times 300$ in x y z t

Flow parameters in SID

Prandtl/Schmidt number $= \frac{\nu}{-} \approx 700$

Data sets: 16 experiments

Laminar flow

Holmboe waves

Intermittent turbulence

Turbulence

"Shear-layer" cropping and rescaling

"Shear-layer" cropping and rescaling

Ri_{g} and "self-organisation"

Ri_{g} and "self-organisation"

Turbulent components

T3 $\theta = 5^{\circ}$ $Re^{s} = 1145$ $Ri_{b}^{s} = 0.147$

Dataset

Turbulent components

Note: incompressibility enforced by "projecting" data on $\nabla \cdot \mathbf{u} = 0$

Energetics: overview

whole system's energy

Energetics: overview

kinetic

viscous

dissipation

conversion

potential

whole system's energy

Energetics: overview

kinetic

viscous

dissipation

conversion

potential

whole system's energy

Energetics: basics

Energetics: basics

Energetics: mean and turbulent KE

Energetics: turbulence

Energetics: turbulence

Energetics: asymptotic turbulence

Energetics: asymptotic turbulence

Energetics: asymptotic turbulence

Lefauve & Linden (2022) JFM, 937, A34 & A35

