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The stratified inclined duct (SID) sustains an exchange flow in a long, gently sloping duct
as a model for continuously forced density-stratified flows such as those found in estuaries.
Experiments have shown that the emergence of interfacial waves and their transition to
turbulence as the tilt angle is increased appears to be linked to a threshold in the exchange
flow rate given by inviscid two-layer hydraulics. We uncover these hydraulic mechanisms
by (i) using recent direct numerical simulations (DNS) providing full flow data in the key
flow regimes (Zhu et al., J. Fluid Mech., vol. 969, 2023, A20), (ii) averaging these DNS
into two layers, and (iii) using an inviscid two-layer shallow-water and instability theory
to diagnose interfacial wave behaviour and provide physical insight. The laminar flow
is subcritical and stable throughout the duct and hydraulically controlled at the ends of
the duct. As the tilt is increased, the flow becomes supercritical everywhere and unstable
to long waves. An internal jump featuring stationary waves first appears near the centre
of the duct, then leads to larger-amplitude travelling waves, and to stronger jumps, wave
breaking and intermittent turbulence at the largest tilt angle. Long waves described by the
(nonlinear) shallow-water equation are interpreted locally as linear waves on a two-layer
parallel base flow described by the Taylor–Goldstein equation. This link helps us to
interpret long-wave instability and contrast it with short-wave (e.g. Kelvin–Helmholtz)
instability. Our results suggest a transition to turbulence in SID through long-wave
instability relying on vertical confinement by the top and bottom walls.
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1. Introduction

Buoyancy-driven exchange flows between water masses of different densities are common
in estuaries and straits, e.g. the straits of the Great Belt, Gibraltar, Bab el Mandab, and
the Bosporus (Gregg & Özsoy 2002). These essentially hydrostatic and two-layer flows
are known to exhibit hydraulic jumps (Farmer & Armi 1988; Thorpe et al. 2018), which
are important discontinuities in the internal flow properties (layer thickness and speed),
and to exhibit interfacial instabilities (Lawrence & Armi 2022). These flow features are
often studied in an idealised ‘shallow-water’ setting consisting of fluid organised in two
counter-flowing, frictionless layers of specified thickness and speed with constant densities
(Armi 1986; Lawrence 1990; Dalziel 1991).

In this paper, we employ two-layer hydraulics as a diagnostic tool to derive insights
from direct numerical simulations (DNS) data of the exchange flows in the stratified
inclined duct (SID). The SID is a canonical stratified shear flow through a long, square
cross-section, tilted duct for which there is now ample data, both experimental (e.g.
Partridge, Lefauve & Dalziel 2019) and numerical (Zhu et al. 2023). The investigation
of turbulence in two-layer shear flows through tubes dates back to the classic experiments
of Reynolds (1883) and Thorpe (1968), who both used a closed tube. The opening of the
tube into large reservoirs in the SID is more recent and allows for interfacial waves and
turbulence to be sustained for much longer time periods, and for various flow regimes to
be distinguished. The successive transitions to increasingly turbulent regimes in the SID,
as the Reynolds number and tilt angle are increased, have been recognised since Macagno
& Rouse (1961) and Kiel (1991), and have been much studied more recently (Meyer &
Linden 2014; Lefauve, Partridge & Linden 2019; Lefauve & Linden 2020; Duran Matute,
Kaptein & Clercx 2023). These transitions are underpinned by many fundamental features
of stratified flows, including interfacial waves and turbulent intermittency.

Our first aim with this new analysis is to uncover internal hydraulic effects in order
to explain some of these leading-order dynamics that DNS and experimental data have
revealed but not yet explained. In particular, we will provide the first direct evidence for
the existence of internal hydraulic jumps where the layer thickness expands in the direction
of the flow of each layer. We also show how the development of jumps and large-amplitude
interfacial waves coincides with a plateau in the exchange flow rate through the duct, after
an initial increase with increasing Reynolds number and tilt in the laminar regime. This
upper bound is a remarkably robust feature of the SID, which has deep ramifications for the
flow energetics and transition to turbulence (Lefauve et al. 2019). Though the emergence
of waves and turbulence has long been linked to the notion of ‘hydraulic control’ in the
experimental SID literature, this link has not yet been studied in detail, primarily because
experiments lack the full velocity, density and pressure data along the length of the duct.
The recent availability of DNS data (Zhu et al. 2023) overcoming these limitations finally
makes a rigorous hydraulic analysis of the SID possible.

Our second aim is to link two-layer internal hydraulic effects to the growth of
instabilities and to shorter (non-hydrostatic) waves, links that are rarely found explicitly
in the literature. The streamwise variation of the base flow in the SID geometry, and
generally in all exchange flows, distinguishes them from idealised parallel stratified shear
flows. This variation, however, is essential to the formation of internal hydraulic jumps,
to the ideas of hydraulic control and maximal exchange, and hence to the nature of SID
turbulence. It is well known that under some flow conditions, the loss of hyperbolicity of
the shallow-water equations renders long waves unstable. However, much less is known
about the consequences of this instability, and the relative importance of long-wave versus
short-wave instability. We will clarify this by explaining how a certain range of unstable
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SID: two-layer hydraulics and instabilities
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Figure 1. A schematic of the stratified inclined duct (SID) numerical set-up. The duct is oriented at angle θ
to the horizontal, which is equivalent to tilting the gravity vector. Densities are non-dimensionalised by the
density differences between the reservoirs, and lengths by the duct half-height. The duct volume is (x, y, z) ∈
[−30, 30] × [−1, 1] × [−1, 1].

nonlinear shallow-water waves associated with an internal jump can be interpreted as
linear instabilities on a locally parallel base flow, and thus that the insights derived from
stable hydraulic theory remain valid even under (moderately) unstable conditions.

To tackle these aims, we introduce our DNS datasets in § 2, and the two-layer averaging
in § 3, using the averaged datasets to show evidence of jumps and maximal exchange. In
§ 4, we adapt two-layer shallow-water theory to the SID, summarise important results from
the literature, and connect them to linear stability, exploring also the transition between
long (hydrostatic) waves and short (non-hydrostatic) waves. We then use our framework for
the hydraulics and stability to analyse our DNS and the influences of molecular diffusion
in § 5. Finally, we draw our conclusions in § 6.

2. Direct numerical simulations

2.1. Methodology
Our DNS solve the following non-dimensional Navier–Stokes equations under the
Boussinesq approximation for the density-stratified flow in the SID set-up sketched in
figure 1:

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u + ĝ Ri ρ − F u, (2.2)

∂ρ

∂t
+ (u · ∇) ρ = 1

Re Pr
∇2ρ − Fρ, (2.3)

where Re = H∗U∗/ν is the input Reynolds number (U∗ = √
g′H∗ is the characteristic

buoyancy velocity, H∗ is the dimensional half-height of the duct, ν is the kinematic
viscosity, and g′ = g�ρ/ρ0 is the reduced gravity obtained from gravitational
acceleration g and reference density variation �ρ/2 around the reference density ρ0);
Ri = g′H∗/(2U∗)2 is the input bulk Richardson number, giving a fixed Ri = 1/4; and
Pr ≡ ν/κ is the Prandtl number (κ is the thermal diffusivity). The unit gravity vector in
the coordinate system (x, y, z) aligned with the duct is ĝ ≡ [sin θ, 0,− cos θ ]. The reader
is referred to Lefauve et al. (2018) and Zhu et al. (2023) for more details on the choice of
velocity and density scaling to non-dimensionalise the equations. The DNS are performed
with the open-source solver Xcompact3D (Bartholomew et al. 2020).

The duct has a square cross-section of non-dimensional height and width 2 and of length
60 (giving a long aspect ratio A = 30). No-slip boundary conditions for u and no-flux
boundary conditions for ρ are applied on the duct walls in the spanwise (y = ±1) and
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vertical (z = ±1) directions with an immersed boundary method. The flow is driven by
the density difference between the dense (ρ = 1) and light (ρ = −1) fluids in the left-
and right-hand reservoirs, respectively, producing counter-flowing layers in the streamwise
x-direction. The experimental reservoirs are modelled by ad hoc forcing terms F u and
Fρ , which damp flow in the reservoirs and restore the density field to ρ = ±1, allowing
us to maintain a quasi-steady exchange flow for arbitrarily long times at a minimal
computational cost. Details about the numerical set-up and validation against experiments
and benchmark cases (with large reservoirs and F u = 0 and Fρ = 0) can be found in Zhu
et al. (2023).

The DNS are started at t = 0 from lock-exchange initial conditions, after which two
counter-flowing gravity currents develop from x = 0, advance at absolute speed ≈1, and
reach either end of the duct after ≈30 time units. Shortly after, the statistically steady
exchange flow of interest in the SID becomes established. Conservatively, we retain only
t ≥ 80 in the following analysis to discard any initial transients, and we run the simulation
until t = 260.

When the set-up is tilted by an angle θ > 0◦, the streamwise component of gravity
contributes Ri ρ sin θ to the x-component of the momentum, and adds extra kinetic energy
to the flow. Increasing θ and/or Re leads to a variety of flow regimes from laminar to wavy
to intermittently turbulent to fully turbulent, found in both DNS (Zhu et al. 2023) and
experiments (Meyer & Linden 2014; Lefauve et al. 2019; Lefauve & Linden 2020).

2.2. Database
We use the DNS database recently acquired by Zhu et al. (2023), which shows good
agreement with experiments when all five non-dimensional parameters Re,Ri,Pr, θ,A
are matched. This database provides the complete set of flow variables all along the duct,
which is a requirement to study properly hydraulic processes in the SID.

This paper focuses on flows at a fixed Reynolds number Re = 650 and fixed Prandtl
number Pr = 7, corresponding to temperature-stratified water at 20 ◦C. Four main cases
are examined at these values of Re and Pr, corresponding to tilt angles θ = 2◦, 5◦, 6◦, 8◦
denoted by B2, B5, B6, B8, respectively, in Zhu et al. (2023). Each of these four cases
covers a specific flow regime: B2 is laminar (L), B5 has stationary waves (SW), B6
has travelling waves (TW), and B8 has intermittent turbulence (I). In the following, we
refer to these datasets as L, SW, TW and I, respectively. We also consider two additional
cases in the travelling wave regime at θ = 6◦ at different Prandtl number values, namely,
Pr = 1 and Pr = 28, and discuss briefly the dependence of the main findings on Pr. We
touch only briefly upon more turbulent cases (e.g. B10 having Re = 1000 and θ = 10◦,
referred to here as T), as they deviate significantly from the assumptions of the model in
this paper, that the flow is composed primarily of two layers with a hydrostatic pressure
field (discussed in Appendix A). For more details about the flow regimes, statistics and
spatio-temporal dynamics, see Zhu et al. (2023), where supplementary movies of the main
cases considered here can also be found.

3. The two-layer model as a diagnostic tool

3.1. Layer averaging procedure
We seek to reduce the dimensionality of our DNS datasets to a set of two layers in order to
interpret their dynamics using simple two-layer hydraulics, as sketched in figure 2. To do
this, we will define the interface that separates the layers as the height z = η(x, t) where
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SID: two-layer hydraulics and instabilities
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Figure 2. A schematic of two-layer shallow-water flow.

ρ = 0. The streamwise velocities, heights and densities of each layer are ui, hi and ρi
(where i = 1, 2 correspond to the upper and lower layers, respectively), which are obtained
by averaging the DNS data over the y-direction and in z over the height of each layer.
Specifically, the flow properties of the layers are obtained from

h1(x, t) = 1 − η(x, t), u1(x, t) = 〈〈u〉y〉z1, ρ1(x, t) = 〈〈ρ〉y〉z1, (3.1a–c)

h2(x, t) = 1 + η(x, t), u2(x, t) = 〈〈u〉y〉z2, ρ2(x, t) = 〈〈ρ〉y〉z2, (3.2a–c)

where the top-layer average is 〈·〉z1 = (1/h1)
∫ 1
η

dz, the bottom-layer average is

〈·〉z2 = (1/h2)
∫ η
−1 dz, and the spanwise average is 〈·〉y = (1/2)

∫ 1
−1 dy. Recall that z = 1

and z = −1 are the non-dimensional heights of the top and bottom walls, respectively.
Figure 3 shows a single snapshot at time t = 110 of u (colours) and ρ (contours) at the
y = 0 midplane for the four datasets, highlighting the ρ = 0 density interface with a thick
green contour.

3.2. Layer-averaged DNS data and evidence of jumps
Figure 4 illustrates the results obtained after applying this layer averaging to the DNS
database. We show x–t diagrams of the lower-layer height h2 (figures 4a–d) and lower-layer
velocity u2 > 0 (figures 4e–h) for the laminar (L), stationary wave (SW), travelling wave
(TW) and intermittently turbulent (I) cases. The layer averaging (in y, z) was performed in
the range |x| ≤ 32, which includes the duct |x| ≤ 30 and extends slightly into the reservoirs
where the layers flow in and out.

The L flow regime exhibits sudden changes in depth and speed only at the ends of the
duct x = ±30, as is expected from the flow exiting into the deep reservoirs. Figure 4(a)
and an instantaneous snapshot of the flow in figure 3(a) confirm that the interface η(x)
is steady and gently sloping down (η′ < 0) throughout the duct, and is symmetric with
respect to the centre of the duct (x = 0), i.e. η(x, t) = η(x) = −η(−x).

In contrast, for the SW and TW flow regimes, a sudden change of contours is observed at
x ≈ 0, indicating the appearance of an internal hydraulic jump. The lower-layer thickness
h2 increases suddenly along the direction of the flow (purple for x < 0 to orange for x >
0 in figure 4), which is accompanied by a sudden drop in u2 (dark to light red). This
discontinuity indicates the presence of what is commonly called an ‘internal hydraulic
jump’ (Baines 2016; Thorpe et al. 2018), as can be seen in figures 3(b,c), where both
layers experience an expansion and deceleration in their respective flow directions. In the
SW and TW flows (figures 3b,c), the interface is sloping up (η′ > 0) in the vicinity of the
jump, and is negative (η < 0) throughout most of the left-hand side of the duct, and vice
versa, (figure 3a).

Figure 5 shows the temporal evolution of the interface in all four flows, with η(x, t)
plotted at intervals separated by one time unit and vertically stacked. In the SW case, the
jump remains in the narrow interval x = ±1, whereas in the TW case, it oscillates over a
much larger interval and sends off waves in either direction, hence the distinction between
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Figure 3. Snapshots at t = 110 of streamwise velocity u (blue to red shading) and density ρ (contours) in the
midplane (y = 0) for the (a) laminar, (b) stationary wave, (c) travelling wave and (d) intermittent cases. The
interface ρ = 0 is emphasised by the thick green line. In (b,c), the interface shows evidence of a jump, with the
lower layer travelling from left to right increasing in thickness near x = 0, and the converse for the upper layer.

the ‘stationary’ and ‘travelling’ wave regimes. In the I case, moving jumps are observed
in the quiet phase (150 � t � 200), being initiated near both ends of the duct at t ≈ 150
and progressively moving towards the centre of the duct. These jumps merge at around
t = 200 and then stay at the middle of the duct x = 0 for a time ≈20 before the transition
to turbulence occurs at t ≈ 220 (the active stage of the intermittent cycle).

3.3. Flow rate and evidence of maximal exchange
To a good approximation, the flow in the SID has zero net (barotropic) volume flow rate

〈u〉y,z ≡ 1
4

∫ 1

−1

∫ 1

−1
u dy dz = 1

2
(u1h1 + u2h2) ≈ 0, (3.3)

but a non-zero baroclinic exchange volume flow rate (or volume flux) Q(x, t) and mass
flow rate (or mass flux) Qm(x, t) defined as

Q ≡ 〈|u|〉y,z = 1
2(u2h2 − u1h1) ≈ −u1h1 ≈ u2h2 using (3.3), (3.4)

Qm ≡ 〈ρu〉y,z ≈ ρ1u1h1 ≈ ρ2u2h2. (3.5)

The approximation in (3.5) comes from the fact that the layer average of the product
ρu is not exactly equal to the product ρiui of the layer averages. Also, recall that the
non-dimensional density is defined such that the mean density is 0 and the minimum and
maximum are −1 and 1, respectively.
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Figure 4. Spatio-temporal diagrams of (a–d) the lower-layer height h2 and (e–h) lower-layer velocity u2 from
the DNS data for the four flow regimes: (a,e) L, (b, f ) SW, (c,g) TW and (d,h) I. All data are for t ∈ [80, 260].

260

(a) (c)

80

–30 0 30 –30 0
x

(b)

–30 0 30
xx

30

(d)

x
–30 0 30

t

Figure 5. Temporal evolution of the density interface η(x, t) in (a) L, (b) SW, (c) TW and (d) I. The interface
curves are stacked in time at intervals of one time unit. Jumps are revealed in (b–d) by discontinuities in η(x).

Hydraulic jumps in two-layer exchange flows are often connected to the notion of
maximal exchange, i.e. of an upper bound in the exchange volume flux Q and mass flux
Qm. This means that flows lacking such jumps have a lower Q, and that no realisable flow
may have a higher Q. While hydraulic jumps have not yet been investigated in detail in the
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(b)(a)

L W I T

Figure 6. (a) The volume flux Q and (b) the mass flux Qm, from the 15 DNS of Zhu et al. (2023) plotted
against Ri Re sin θ . The symbols, coded by the respective regimes, show the time-averaged value, while the
error bars depict the extreme values. While Q asymptotes to ≈0.5 (maximal exchange), Qm decreases at high
Re Ri sin θ because of mixing.

experimental SID literature, the mass flux Qm has, due to the simplicity with which it can
be measured.

In figure 6, we show the dependence of the volume flux Q and the mass flux Qm on
Ri Re sin θ ≈ (1/4)θ Re using its temporal mean (symbols) and extreme values (error bars)
in 15 different DNS from Zhu et al. (2023), containing the four main datasets L, SW, TW
and I, as well as 11 others, including one turbulent dataset (T). We find that both Q and
Qm increase approximately linearly with θ Re in the L regime (where little mixing ensures
that Q ≈ Qm), in agreement with the laminar analytical solution of Duran Matute et al.
(2023) (the ‘viscous–advection–diffusion’ balance). For higher values of θ Re, both Q
and Qm reach an upper bound ≈ 0.5 in the W regime (SW, TW), and the volume flux Q
maintains this value into the I and T regimes, while Qm drops below 0.5 in these latter
I and T regimes. These observations are consistent with the corresponding experimental
data of Lefauve & Linden (2020) (their figures 5 and 6) if we exclude their data at small
angles θ < 2◦ (which behave slightly differently, and we did not simulate them). This
apparent upper bound on Q is evidence of maximal exchange since a further increase
in θ Re does not lead to an increase in the velocity difference between the upper and
lower layers. As will be shown later (§ 5.3), Q ≈ 0.5 is the threshold of the long-wave
instabilities and onset of hydraulic transitions, and a further increase in Q beyond this
limit is taxed by turbulent dissipation. The reduction in Qm below 0.5 at high θ Re is
caused by mixing across the shear layer in the I and T regimes, reducing the net mass
transport.

This large body of experimental and numerical evidence in favour of maximal exchange
in the SID, and the observation that Q,Qm ≈ 0.5 in the SW and TW regimes, combined
with our observations in § 3.2 of the existence of an internal jump, are strongly suggestive
that hydraulic effects dominate the flow from the W regime onwards.

In the next section, we develop the two-layer hydraulics framework to study these jumps
and maximal exchange, and their relation to the transition from laminar flow to waves and
to turbulence in the SID.

4. Two-layer equations: characteristics and instabilities

In this section, we aim to define and relate the characteristic velocity of the two-layer
flows in the context of the SID to the hydraulic regime of the flow. We also aim to provide
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a physical implication of when this characteristic velocity is not purely real. We start
by simplifying the inviscid Navier–Stokes equations using the shallow-water (long-wave)
approximation in §§ 4.1–4.3, before comparing it to the Taylor–Goldstein (linear wave)
theory in §§ 4.4 and 4.5, and interpreting our findings in § 4.6.

4.1. Shallow-water equations: nonlinear hydrostatic waves
The shallow-water approximation that assumes the pressure is hydrostatic is verified in
Appendix A. Under this approximation the upper layer obeys

∂h1

∂t
+ ∂(h1u1)

∂x
= 0,

∂(h1u1)

∂t
+ ∂

∂x

(
h1u2

1 + Ri cos θ ρ1
h2

1
2

)

= Ri sin θ ρ1h1 − Ri cos θ h1
∂

∂x
(pw + ρ1h2 + ρ1b),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

and the lower layer obeys

∂h2

∂t
+ ∂(h2u2)

∂x
= 0,

∂(h2u2)

∂t
+ ∂

∂x

(
h2u2

2 + Ri cos θ ρ2
h2

2
2

)

= Ri sin θ ρ2h2 − Ri cos θ h2
∂

∂x
(pw + ρ1h1 + ρ2b).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

Here, pw(x, t) is the pressure at the upper wall, and b(x) is the elevation of the bottom
wall relative to z = 0. Conveniently, the bottom wall in the SID is fixed at b(x) = −1. We
subtract the momentum equations in (4.1) from (4.2) to remove pw and reduce the number
of unknowns. The streamwise variation of density of the upper and lower layers is also
neglected compared to variations in the height of the layers (i.e. ∂(ρh)/∂x ≈ ρ ∂h/∂x).
The shallow-water equations (SWEs) become

∂h2

∂t
− ∂h1

∂t
+ h2

∂u2

∂x
− h1

∂u1

∂x
+ u2

∂h2

∂x
− u1

∂h1

∂x
= 0, (4.3)

∂u2

∂t
− ∂u1

∂t
+ u2

∂u2

∂x
− u1

∂u1

∂x
+ Ri cos θ (ρ2 − ρ1)

∂h2

∂x

= Ri sin θ (ρ2 − ρ1)− Ri cos θ (ρ2 − ρ1)
∂b
∂x
, (4.4)

with two auxiliary equations to satisfy the no net (barotropic) flow condition and geometric
constraint inside the duct (∂b/∂x = 0):

u1h1 + u2h2 = 0, h1 + h2 = 2. (4.5a,b)

By taking the derivative of (4.5a,b) with respect to x, these four equations can be written
compactly as

C
∂q
∂t

+ A(q,Δρ)
∂q
∂x

= f , (4.6)
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where the state vector q and coefficient matrices A,C are

q =

⎡
⎢⎣

u1
u2
h1
h2

⎤
⎥⎦ , A =

⎛
⎜⎝

−u1 u2 0 Ri cos θ Δρ
−h1 h2 −u1 u2

0 0 1 1
h1 h2 u1 u2

⎞
⎟⎠ ,

C =

⎛
⎜⎝

−1 1 0 0
0 0 −1 1
0 0 0 0
0 0 0 0

⎞
⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7a–c)

The SWE (4.6) are quasi-linear, i.e. linear in the derivatives of q but with the coefficient
matrix A dependent on q. The quasi-constant local density difference between layers is
defined as Δρ(x, t) ≡ ρ2 − ρ1 ∈ (0, 2) (specified by our layer-averaged DNS data). This
equation does not assume that interfacial waves have infinitesimal amplitudes, but it does
assume, through the hydrostatic assumption, that waves are long with respect to the layer
height (i.e. that their non-dimensional wavenumber satisfies k  1). In the following, we
neglect the forcing

f = [Ri sin θ Δρ, 0, 0, 0]T, (4.8)

recalling that sin θ  1. We will study (4.6) in the homogeneous limit ( f = 0). We are
particularly interested in the eigenvalues of A, in which f plays no role. The role of
forcing, which provides a source term along the characteristics, in shallow-water theory
is an interesting question left for future work.

4.2. Characteristic curves and propagation of information
Consider a left eigenvector v and eigenvalue λ associated with the matrix pair (A,C) such
that vHA = λvHC, where superscript H denotes Hermitian transpose. Multiplying (4.6)
by vH yields

vHC

(
∂q
∂t

+ λ(x, t)
∂q
∂x

)
= 0. (4.9)

The eigenvalues λ are called characteristic velocities, since they define characteristic
curves s in the (x, t) plane along which the partial differential equation (4.6) reduces
to an ordinary differential equation (Whitham 2011). For this homogeneous equation,
the combination of flow variables vHC dq/ds = 0 is conserved. These characteristic
velocities, henceforth referred to simply as ‘characteristics’, can be complex, λ =
λR + iλI ∈ C. Their real part λR ≡ Re(λ) represents the phase speed of shallow-water
waves, describing the trajectories s. Their imaginary part λI ≡ Im(λ) represents any
potential growth (λI > 0) or decay (λI < 0) of these waves. The direction of information
propagation is set by the sign of λR: when λR > 0, information propagates rightwards
(towards increasing x), and vice versa, whereas λR = 0 indicates stationary waves.
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SID: two-layer hydraulics and instabilities

The characteristics λ are given by the two distinct solutions of det(A − λC) = 0:

λ1,2(x, t) = h1u2 + h2u1

h1 + h2︸ ︷︷ ︸
convective velocity ≡λ̄

±
√

Δρ Ri cos θ h1h2

h1 + h2
(1 − F2

Δ)︸ ︷︷ ︸
phase speed ≡ δλ

(4.10)

≈
︷ ︸︸ ︷
−2ηQ
1 − η2 ±

︷ ︸︸ ︷√
Δρ

2
cos θ (1 − η2)(1 − F2

Δ) using (3.4), (4.11)

where

F2
Δ(x, t) = (u2 − u1)

2

Δρ Ri cos θ (h1 + h2)
(4.12)

≈ 2
Δρ cos θ

(
2Q

1 − η2

)2

using (3.4). (4.13)

Here, (4.11) and (4.13) use the volume flux Q > 0 in (3.4) (which is an approximation
relying on (3.3)) and the interface position instead of the layer heights and velocities, as
well as the fact that Ri = 1/4 and h1 + h2 = 2 in the SID. We see that the characteristics
consist of a convective velocity λ̄ and a phase speed δλ, which can be imaginary, depending
on the value of the ‘stability Froude number’ F2

Δ (Long 1956; Lawrence 1990; Dalziel
1991). Note that (4.7a–c), (4.10) and (4.12) are slightly modified versions of those given in
previous studies (Long 1956; Armi 1986; Lawrence 1993) adapted to SID flows.

If F2
Δ < 1, then the two characteristics λ1,2 = λ̄± δλ are real, and information

propagates in both directions relative to the convective velocity λ̄. The absolute direction
of propagation is given by the sign of λ1,2, to which we will return in § 4.3.

If F2
Δ > 1, then the characteristics become complex conjugates λ1,2 = λR ± iλI = λ̄

±i |δλ|, indicating that the system is no longer hyperbolic and that waves are temporally
unstable. The condition F2

Δ > 1 is sometimes known as Long’s instability criterion (Long
1956), although it is quoted in Lamb (1932) and likely dates back to Helmholtz. The real
part is the convective velocity, i.e. information propagates in only one direction, and the

growth rate is λI = |δλ| =
√
(Δρ/2) cos θ (1 − η2)(F2

Δ − 1).
Figures 7(a–c) show how λ1,2 vary with the volume flux Q and interface position η

following (4.11), assuming no mixing (Δρ = 2) and a horizontal duct (cos θ = 1). We
compare the case where the interface is locally symmetric (η = 0, figure 7b) to the cases
where it is asymmetric, i.e. above or below the mid-level (η = ±0.5 in figures 7(a,c),
respectively). Figure 7(b) shows that with a symmetric interface, λ1,2 = ±

√
1 − 4Q2

are real (red curves) for Q ≤ 0.5, and become purely imaginary (blue curves) for Q >

0.5. However, when the interface is either below or above the midplane (η = ±0.5,
figures 7a,c), this transition to instability occurs at a lower critical volume flux Q > Qc ≈
0.4. In summary, instability is caused, for a given volume flux Q, by an increasingly
asymmetric interface |η|, and vice versa, for a given interface position, by an increasing
volume flux Q. This offers a possible explanation for the transition from L to W flow
observed in figure 6.
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2.5
η = 0.5 η = 0 η = –0.5
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–2.5
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2.5
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(b)(a) (c)

Figure 7. Real and imaginary parts of the eigenvalues of the two-layer SWE in (4.11) at (a) positive, (b) zero
and (c) negative interface elevations η as functions of the volumetric flow rate Q. The eigenvalues are always
complex for Q ≥ Qc = 0.5, and become complex for slightly lower critical values Qc ≈ 0.4 in the asymmetric
cases (a,c).

4.3. Composite Froude number and hydraulic control
To further stress the importance of the characteristics λ1,2, we return to the original SWE
(4.6), and note that a non-trivial steady solution q(x) requires det A /= 0, i.e.

det A = 2 Δρ h1h2 Ri cos θ (G2 − 1) /= 0 ⇔ G2 /= 1, (4.14)

where G2 is the squared composite Froude number defined with the Froude numbers of
the upper and lower layers, F1 and F2, respectively,

G2 = F2
1 + F2

2, Fi = ui√
Δρ Ri cos θ hi

, i = 1, 2. (4.15a,b)

Points at which G2 = 1 are called control points (Armi 1986; Lawrence 1990; Dalziel
1991). At control points, A is non-invertible, and a regularity condition must exist to
recover a steady solution.

The link between characteristics and the composite Froude number can be highlighted
with the identity

G2 = 1 + h1 + h2

�ρ Ri cos θ h1h2
λ1λ2 = 1 + 2λ1λ2

Δρ cos θ (1 − η2)
, (4.16)

≈ 1 +
√

2
Δρ cos θ

λ1λ2FΔ
2Q

, using (4.13). (4.17)

From this expression, we deduce the following, illustrated in figure 8.
If the waves are stable (F2

Δ < 1), then the characteristics λ1,2 are real. The flow is called
subcritical, and information propagates in both directions (along positive and negative
x), i.e. λ1λ2 < 0 ⇔ G2 < 1. In other words, the absolute phase speed |δλ| is larger than
the absolute convective velocity λ̄ in (4.10). Vice versa, the flow is called supercritical
when information propagates in only one direction, i.e. λ1λ2 > 0 ⇔ G2 > 1, and the
absolute phase speed |δλ| is smaller than the absolute convective velocity λ̄. Note that
for supercritical flow, the direction of propagation associated with λ1 and λ2 is the same
as that given by the convective velocity λ̄, i.e. the waves are swept downstream.

If, on the other hand, the waves are unstable (F2
Δ > 1), then the characteristics

are complex conjugates λ1,2 = λR ± iλI , i.e. information always propagates in a
single direction given by the sign of λR = λ̄, and the flow is always supercritical
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FΔ
2 < 1

stable

FΔ
2 > 1

unstable

λ1,2 ∈ R

= λ̄ ± δλ
hyperbolic

λ1,2 ∈ C\R

= λ̄ ± i δλ
non-hyperbolic

G2 < 1

subcritical |δλ| > |λ̄|

G2 > 1

supercritical |δλ| < |λ̄|

λ1λ2 < 0

λ1λ2 > 0

G2 > 1

supercritical

waves propagate at velocity λR = λ̄

grow at rate λI = |δλ|

λ1λ2 > 0

Figure 8. Summary of the scenarios revealed by the stability Froude number F2
Δ in (4.12), characteristics λ1,2

in (4.10) and composite Froude number G2 in (4.17).

(λ1λ2 = (λR)2 + (λI)2 > 0 ⇔ G2 > 1). Under unstable conditions, control points where
G2 = 1 cannot exist, but points can exist where stationary (λR = 0) waves grow (λI > 0)
and control the flow.

In summary, the SWE predicts that information propagates along a pair of trajectories
λ1,2 that arise from the solution of a generalised eigenvalue problem and depend on
the local (x) and instantaneous (t) state of the two-layer representation. The solutions
λ1,2 = λ̄± δλ have a real convective velocity λ̄ and a phase speed δλ, which may be either
real or imaginary. When λ1,2 are real (δλ ∈ R), they represent the propagation of two
(neutrally stable) kinematic waves with phase speed δλ relative to the convective velocity
λ̄. The respective signs of λ1,2 determine the direction of information propagation and
whether the flow is subcritical (composite Froude number G2 < 1, product λ1λ2 < 0)
with information propagating in both directions, or supercritical (G2 > 1, λ1λ2 > 0) with
information propagating only in the direction given by the sign of λ̄. When λ1,2 are
complex (λ1,2 = λR ± iλI = λ̄± i |δλ|), the real part still represents a convective velocity
that carries information, while the positive imaginary part indicates that the flow is
unstable. Although in this unstable case the SWE is no longer hyperbolic, the flow may
be viewed as supercritical (G2 > 1) in the sense that information is propagated only in the
direction given by λ̄ = λR, and as hydraulically controlled when λ̄ = 0.

In the following subsections, we clarify the interpretation of unstable shallow-water
waves using linear stability analysis around a locally parallel base flow. In § 4.4, we take
the long-wave limit of solutions of the Taylor–Goldstein equations; in § 4.5, we study the
link between long and short waves; and in § 4.6, we linearise the SWEs assuming the
waves are sufficiently (but not excessively) long.

4.4. Taylor–Goldstein equations: linear short and long waves
We relax the previous restriction that waves must be long (k  1) by studying waves
of possibly larger k but of infinitesimal amplitude developing on a parallel base flow
described by a velocity profile U(z) and a density profile R(z). The perturbation
streamfunction ψ̂(z) exp ik(x − ct) describing the evolution of these two-dimensional
linear waves is given by the inviscid Taylor–Goldstein equation (TGE)

(U − c)
(

d2

dz2 − k2
)
ψ̂ − U ′′ψ̂ − Ri cos θ R′

U − c
ψ̂ = 0. (4.18)
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This equation can be analysed following standard methods (e.g. Drazin 2002; Smyth &
Carpenter 2019), with details given in Appendix B. Note that we assumed small tilt angles
0 < sin θ  cos θ , although the more general TGE in Appendix B shows that sin θ has
a destabilising effect (ignored here). In the ordinary differential equation above, a prime
denotes differentiation with respect to z, and c ∈ C is the phase speed of the plane waves,
akin to the characteristics λ of the SWE. However, we use a different notation for the
characteristics of shallow-water nonlinear waves and the phase speed of Taylor–Goldstein
linear waves to emphasise that while the former implicitly assumes k  1, the latter
implicitly assumes k � A−1. In other words, the Taylor–Goldstein linear waves that we
investigate should be much shorter than the duct length A for the local analysis on a parallel
base flow to be sensible. In other words, k � A−1 ensures that the waves do not ‘feel’ the
streamwise variations of the base flow along the duct.

To establish a link with two-layer characteristics and obtain solutions for c, we assume
a two-layer flow bounded by solid boundaries, with fixed layer heights h1, h2, velocities
u1, u2, and an interface at z = 0, consistent with the two-layer model adopted throughout
this paper:

U(z) =
{

u1, 0 < z ≤ h1,

u2, −h2 ≤ z < 0,
R(z) =

{
ρ1, 0 < z ≤ h1,

ρ2, −h2 ≤ z < 0.
(4.19a,b)

Note that h1 + h2 = 2, and by a simple vertical shift, the above model is equivalent to
having a domain restricted to z = ±1 and an interface at an arbitrary z = η (giving h1,2 =
1 ± η). In § 5.5, we will use the velocity, height and density of layers from the DNS data
to specify U and R.

By enforcing the matching conditions for the streamfunction and pressure at the
interface (see Appendix B), we derive the dispersion relation for the complex phase speeds:

c1,2 = u1 + u2

2
+ (σ5 − σ6)(u1 − u2)± σ2

2(σ1 − 1)
,

σ1 = cosh(4k), σ2 = sinh(2k)Λ, σ3 = sinh(2kh2),

σ4 = sinh(2kh1), σ5 = cosh(2kh2), σ6 = cosh(2kh1),

Λ =
√

−4
k

(
kσ4σ3[u1 − u2]2 + Ri cos θ [σ4(1 − σ5)+ σ3(1 − σ6)] Δρ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.20)

These waves are the well-known Kelvin–Helmholtz (KH) waves supported by a single
vortex sheet (see e.g. § 4.6.1 of Smyth & Carpenter 2019). They are modulated by
stratification; increasing Ri cos θ Δρ always stabilises them. Importantly, the dispersion
relation (4.20) describes waves in a domain bounded by the top and bottom boundaries,
which, as we will see, strongly affect waves that have a wavelength comparable to or longer
than the domain height.

For ‘short’ waves – i.e. having a wavelength of the order of the duct height k = O(1)
or shorter, k > 1 – the dispersion relation (4.20) cannot be simplified further, and these
waves are dispersive. These will be referred to simply as KH waves, as in the short-wave
limit they are identical to those found in vertically unbounded domains.

For ‘long’ waves (which, for clarity, we do not call KH waves) – i.e. having a wavelength
much longer than the duct height, but still shorter than the duct length, A−1  k  1 – the
dispersion relation (4.20) simplifies as sinh kh → kh and cosh kh → 1, and (4.20) reduces
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Figure 9. Dispersion relation of all (long and short) inviscid two-layer waves: growth rate (colours) and
phase speed (contours) solutions of the TGE varying with wavenumber k and volume flux Q. (a) Symmetric
interface η = 0. (b) Asymmetric interface η = −0.5. (c) Symmetric interface but without solid top and bottom
boundaries at z = ±1, in which case the long waves of the SWE disappear.

to (4.10), i.e.
c1,2(k) → λ1,2 when k  1, (4.21)

and these waves are non-dispersive. In other words, the characteristics λ1,2 of nonlinear
shallow-water waves can be identified with the phase speeds c1,2 of linear (infinitesimal)
long waves calculated assuming the local two-layer flow (u1, u2, h1, h2) to be parallel and
steady as in (4.19a,b).

The dispersion relation (4.20) shows that there exists a smooth transition between short
KH waves and long shallow-water waves, as those waves differ by their wavelength but
not the underlying physical mechanism.

Although the limit (4.21) can be inferred from Gu (2001) (§ 3.3) and is alluded to briefly
in Boonkasame & Milewski (2012) (§ 3), it does not appear to be disseminated widely in
the hydraulics literature. We visualise this smooth transition next.

4.5. Long versus short waves
Figure 9 shows the dispersion relation from the TGE (4.20) with the phase speed Re(c1) =
cR

1 (blue to red contours) and growth rate Im(c1) = cI
1 (colour map with deep blue being

stable) as functions of the wavenumber k (vertical axis) and the volume flux Q (horizontal
axis). We compare a symmetric interface (η = 0, figure 9a), an asymmetric interface (η =
−0.5, figure 9b), and a case with a symmetric interface but without solid top and bottom
boundaries (figure 9c), whose dispersion relation (B13) is derived analytically in § B.3.

First, figures 9(a,b) show that long waves are non-dispersive (the phase speed contours
do not depend on k). Second, long waves become unstable (lighter shades of blue and
green) above a critical volume flux Q > Qc, equal to 0.5 for a symmetric interface
(figure 9a) and lower than 0.5 for an asymmetric interface (figure 9b). Third, for a
symmetric interface, all unstable waves (long and short) are stationary (absence of
contours), but all stable waves are travelling (presence of contours). For an asymmetric
interface, even unstable waves travel in the reference frame of the duct. Fourth, the
transition between short and long waves is smooth, i.e. there is a continuity between the
long shallow-water waves controlling the hydraulics of two-layer flows and the short KH
waves.

977 A25-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.871


A. Atoufi and others

Figures 9(a,b) also provide further insights. First, short waves (k � 1) become unstable
at smaller values of Q compared to the long-wave threshold Qc. This transition to short
waves becomes noticeable from k � 10−0.5 ≈ 0.3, and is clear for k > 1. The shortest
waves shown here (k = 102) are predicted to become unstable above a very small volume
flux Q � 0.1. However, we note that this threshold would be closer to the long-wave Qc
if we included viscosity in the TGE, as viscosity would significantly dampen the growth
of short waves. These plots show that for a given value of Q, the growth rate increases
monotonically with k (i.e. the shortest waves are the most unstable). As is often the case,
this ‘ultraviolet catastrophe’ would be regularised by viscosity, with the probable existence
of a maximum growth rate at an intermediate k for intermediate values of Re.

Figure 9(c) shows that the absence of top and bottom boundaries does not affect short
waves (the colours and contours at k � 3 are identical to figure 9a), because they do not
‘feel’ the presence of the boundaries. However, the absence of solid boundaries precludes
the existence of unstable long waves, k � 0.3, and all unstable linear waves are ‘short’
and dispersive. In other words, this analysis shows explicitly that the presence of solid
boundaries in the SID is crucial to explain the leading-order dynamics in the DNS by
allowing long-wave instability. In short, adding boundaries (figure 9a) creates the long
waves on which hydraulic effects rely, and long waves transition smoothly into short waves
as k increases.

In Appendix C, we study how the growth of long waves is impacted by smooth,
diffuse (i.e. not strictly two-layer) density and velocity profiles, which are expected in
all real-world flows (having finite Re and Pr). We show that long waves become unstable
when Q > Qc even for different smoothed profiles such as hyperbolic tangent or sinusoidal
mean profiles.

4.6. Link between complex characteristics and instability
The natural link between λ1,2 and c1,2 in the long-wave limit (4.21) can be understood
further by considering another limit. It is possible to linearise directly the SWE (4.6) to
study the evolution of infinitesimal perturbations ε q̃(x, t) (0 < ε  1) on a parallel, steady
base flow q0 = (u1, u2, h1, h2) akin to (4.19a,b). We perform a first-order Taylor expansion
of the coefficient matrix from (4.7a–c), A(q) = A(q0 + εq̃), and obtain

C
∂(q0 + εq̃)

∂t
+
[

A(q0)+ εq̃
∂A

∂q0

] [
∂q0

∂x
+ ε

∂ q̃
∂x

]
= 0. (4.22)

At order ε, we have the linear, local SWE

C
∂ q̃
∂t

+ A0
∂ q̃
∂x

= −q̃
∂A

∂q0

∂q0

∂x︸︷︷︸
=0

, (4.23)

where A0 ≡ A(q0) is the local constant-coefficient matrix. Importantly, the right-hand side
coming from the Taylor expansion, and acting as a forcing term, vanishes when we assume
that the base flow varies slowly. Substituting the plane wave ansatz q̃ = q̂ exp ik(x − ς t)
gives the phase speed ς as the eigenvalue of the matrix pair (A0,C). The two distinct
solutions ς1,2 of det(A0 − ςC) = 0 then become identical to the local characteristics λ1,2
(at fixed x, t) derived in (4.10).

In other words, the nonlinear shallow-water wave (k  1) characteristics λ1,2 can be
interpreted as the linear shallow-water waves phase speed ς1,2 propagating on a locally
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q(x, t) = (u1, u2, h1, h2)(x, t)

q0 = (u1, u2, ρ1, ρ2) q(x, t) = q0 + εq̂ exp ik(x – ςt)

Parallel flow k � A–1

Linearise ε � 1
Plane waves with speed ς

q(x, t) = q0 + εq̂ exp ik(x – ct)

Two-layer parallel flow k � A–1

Parallel flow k � A–1

Duct length

A–1

Duct height

1

Linearise ε � 1
Plane waves with speed c

Waves of interest Wavenumber

k

Two layers

Shallow-water
equations (SWE)

Characteristics λ1,2(x, t)
non-dispersive, global

Taylor–Goldstein
equations (TGE)

Phase speeds c1,2(k)

dispersive, local

Long waves k � 1

Long waves k � 1

Long waves k � 1 A–1 � k � 1

λ1,2 → c1,2, ς1,2  non-dispersive, local

Wave propagation

sign λR = –sign η ∝
Wave growth

(1 – η2)(FΔ
2 – 1)

cos θ (1 – η2)(1 – FΔ
2)=

–2ηQ
1 – η2

±
2


ρ

(a)

(b)

Inviscid Navier–Stokes
equations (NSE)

                                                
q(x, t) = (u, ρ)

Unstable FΔ
2     > 1 ⇒ λ1,2 = λR ± iλI

Figure 10. (a) Summary of the interpretation of characteristics in § 4.2 using linear theory, either by first
linearising the Navier–Stokes equations, and then taking the long-wave limit (TGE, § 4.4), or vice versa (SWE,
§ 4.6). Both approaches yield the same result for waves much shorter than the duct length but much longer than
the duct height (range sketched in (b)).

parallel base flow (k � A−1), which are themselves the long-wave, non-dispersive limit
case of the Taylor–Goldstein two-layer phase speeds c1,2. Ultimately, this result stems from
the fact that, simply put, the linearisation and the long-wave limit commute. In particular,
the potential positive imaginary component of characteristics λI > 0 can be interpreted as
the exponential growth rate of such unstable waves satisfying A−1  k  1.

This interpretation is summarised in figure 10. The long aspect ratio A of the
SID (in this paper, A = 30), ensures that the range of waves A−1  k  1 exists,
and therefore that this interpretation is useful, unlike in shorter geometries having
A � 10. However, we note that this interpretation becomes questionable near the
duct inlet and outlet if the base flow variations in x are significant. We also note
that this interpretation can be generalised to any number of layers greater than
two.

5. Two-layer hydraulics applied to DNS

In this section, we use the modelling results of § 4 to understand the observations of
hydraulic jumps and maximal exchange of § 3. In § 5.1, we study the stability Froude
number flagging long-wave instability; in § 5.2, we focus on the characteristics and
composite Froude number to diagnose internal jumps and hydraulic control; and in § 5.3,
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Figure 11. Spatio-temporal diagram (x − t) of the stability Froude number F2
Δ for the (a) L, (b) SW, (c) TW

and (d) I cases. Long-wave instability is predicted for F2
Δ > 1 (red). The dashed lines represent t = 110 (L, SW

and TW) and t = 180 (I) when snapshots in figure 3 were plotted.

we explain the observed flow rate with notions of maximal exchange, viscous friction and
mixing.

5.1. Stability Froude number and instability
In figure 11, we plot the spatio-temporal diagram of the stability Froude number F2

Δ(x, t)
given by (4.12) in our four datasets L, SW, TW and I (all at Re = 650) to diagnose any
long-wave instability.

The laminar flow (L) has F2
Δ < 1 everywhere (in blue in figure 11a), hence long waves

are stable at θ = 2◦. In all other cases, F2
Δ > 1 (in red in figure 11) in most of the duct,

hence long waves are unstable at Re = 650 for θ > θc, where θc ∈ [2◦, 5◦]. In the wave
flows (SW and TW), the waves are most unstable (maximum F2

Δ, deep red) near the centre
of the duct. In the I flow, long waves are very unstable (F2

Δ � 1) throughout most of the
duct. These diagrams also show that as the tilt angle θ is increased modestly between
5◦ (figure 11c), and 8◦ (figure 11d), further changes take place as the flow becomes
increasingly unstable to long waves. Next, we delve deeper into the hydraulics analysis
to understand jumps by focusing on the characteristics in each flow.

5.2. Characteristics, composite Froude number and control
In figure 12, we plot the characteristic velocities λ1,2(x) given by (4.10) (real parts in
figure 12a and imaginary parts in figure 12b), and the composite Froude number G2(x)
given by (4.17) (figure 12c) at time t = 110, to diagnose the propagation of information
and criticality of the flow, respectively. In figure 13, we plot a set of discrete trajectories
(white curves) by solving

dX
dt

= λR(X, t) for t > 80, (5.1)

and initialising X(t = 80) as 61 equidistant points along the duct x ∈ [−30, 30].
Additionally, we plot the local growth rate λI(x, t) in background colours (dark blue to
yellow) for comparison.

Figures 12(a) and 13(a) show that in the stable L flow, λ has two distinct real
roots of opposite signs throughout most of the duct (λR

1λ
R
2 < 0 ⇔ G2 < 1), allowing
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I, t = 180
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L, λ2(a)
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(c)

Figure 12. Characteristics (a) real part λR, (b) imaginary part λI (only the positive values are shown) and
(c) composite Froude number G2 of the L, SW, TW, I flows at t = 110, and TW, I flows at t = 180.
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Figure 13. Characteristic curves X(t) (in white) obtained by (5.1) for (a) L, (b) SW, (c) TW and (d) I. The
curves (in white) originate from 61 equally spaced positions between x = −30 and x = 30. The colours show
the growth rate λI(x, t) (which is zero in (a)).

characteristics to cross. Information propagates in both directions, and the flow is
subcritical inside the duct. The speed of propagation is of order 0.2–0.4, i.e. significantly
lower than the advective velocity 1. However, at the ends of the duct, the characteristics
vanish locally (λR

1λ
R
2 = 0 ⇔ G2 = 1 at |x| ≈ 30), signalling that long waves become

stationary. Figure 12(a) shows that outside the immediate neighbourhood of the duct inlets
and outlets (28 � |x| � 30), information propagates in only one direction, leftwards on the
left-hand side (λR

1 , λ
R
2 < 0) and rightwards on the right-hand side (λR

1 , λ
R
2 > 0), i.e. always

away from the duct. The ends of the duct therefore act as control points, in the sense that
no information from the reservoirs can propagate into the duct. The existence of two such
hydraulic control points, with their respective characteristics pointed outwards, means that
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Figure 14. Froude numbers of the upper and lower layers of (a) L, (b) SW, (c) TW and (d) I, at t = 110.

the interior of the duct is ‘fully controlled’ in the hydraulic sense, isolating the flow from
hydrostatic disturbances within the reservoirs to either side. This is the first direct evidence
that SID flows in the L regime are controlled hydraulically.

In contrast, in the unstable SW, TW and I cases, the roots are complex conjugates
throughout most of the duct (figures 12a,b), a consequence of instability (F2

Δ > 1). These
unstable waves always move at the local convective velocity of the flow, λR = λ̄(x, t),
which we recall from (4.11) is non-zero if the interface is not at mid-depth η(x, t) /= 0.

In the SW and TW cases, the unstable waves are initially carried rightwards (λ̄ > 0)
throughout most of the left-hand side of the duct, and leftwards (λ̄ < 0) throughout most
of the right-hand side of the duct, as seen in figures 13(b,c). Thus all unstable waves
are carried towards the centre (x = 0) where their characteristics converge, creating the
hydraulic jump observed in figure 5. The largest values of λI = |δλ| are found in the region
where the λR = λ̄ convective components converge (see figure 12b and green–yellow
shades in figure 13b,c). Their growth rate is fast (λI ≈ 0.2 − 0.5) and slightly higher in
TW than in SW.

We note that jumps are also marked by the changes of layer Froude numbers (F2
i ) at

the duct centre for the SW and TW cases in figures 14(b,c), which is not observed in
the L case (figure 14a). In the SW and TW cases, the flow transitions from one that
is supercritical with a thinner lower layer (F2 > 1) to one that is supercritical with a
thinner upper layer (F1 > 1), unlike standard hydraulic jumps in single-layer flows, which
transition from a supercritical to a subcritical state. In both single-layer and two-layer
cases, the flow transitions between two conjugate states. These states refer to dynamically
possible velocities and heights of each layer downstream of the jump conjugate to layer
heights and velocities upstream of the jump (e.g. through cross-jump constant momentum
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fluxes); see Yih & Guha (1955) and Henderson (1996, p. 70). The jumps in SW and TW
can be called ‘weak jumps’ because of their moderate ‘upstream’ Froude numbers of each
layer (between 1 and 2) and the small energy they dissipate, compared to direct, breaking
hydraulic jumps. In the case of I (figure 14d), locally higher G2 and F2

i values are observed
as a result of intensive local short waves and visibly higher dissipation at the active stage,
which are not necessarily indicative of ‘jumps’.

This pattern of unstable characteristics converging towards the centre to form a jump can
be summarised by sign λR = −sign x. This can be understood first by sign λR = sign λ̄ =
−sign η from (4.11) – i.e. the waves are carried at the local convective velocity – and
second by sign η = sign x – i.e. the interface does not slope down as in L but is instead
lowered on the left-hand side of the duct, and lifted on the right-hand side (central jump).

The main difference between SW (stationary wave regime) and TW (travelling wave
regime) lies in the behaviour of λR near the jump at approximately x = 0 (figure 12a).
While λR(x) goes smoothly through zero in SW, it oscillates more in TW, suggesting
that the location of the jump is prone to oscillations. This is confirmed by comparing
the x − t trajectory of the locus of the maximum F2

Δ in figures 11(b,c) or the maximum λI

in figures 13(b,c) as a proxy to the location of the jumps.
Finally, we turn to the I flow, which exhibits more vigorous interfacial turbulence and

wave instability (especially for t = 150 − 250) and greater variability in x and t than
for SW and TW. The characteristics in figure 13(d) converge quickly and organise into
three main clusters: a central stationary cluster flanked by a left and a right cluster, which
themselves converge to form discrete jumps at t ≈ 160 while being carried to the centre,
eventually converging into a single jump t � 200. The convergence of characteristics tends
to coincide with the maximum instability (λI ≈ 0.5). During the more stable (transitional)
period at t = 110, the multiple sign reversals of λR(x) (figure 12a) hinder a straightforward
interpretation of wave propagation along x. Although our discussion for the I (and also
TW) flow related to figure 12 was based on t = 110 (active stage), we note that even
at t = 180, λI is non-zero as shown figure 12(b), which implies that at later times, flow
undergoes a transition from a laminar-like state to a more chaotic state.

This pattern by which unstable waves are carried in SW, TW and I flows differs so
greatly from the classical picture of hydraulic control in L flow that it prompts the question:
since information travels towards the duct centre, does it travel from the reservoirs into the
duct, and is the flow still controlled hydraulically? Figure 12 shows that close to the duct
exits (|x| ≈ 28), the composite Froude number G2 (figure 12c) of all the cases becomes 1.
Meanwhile, in the immediate neighbourhood of the duct ends 28 � |x| � 30, the waves
are stable (λI = 0, figure 12b), and both the curves of the real characteristics (figure 12a)
and of the composite Froude number G2 (figure 12c) match closely those in the L flow
despite differences in the flow inside the reservoirs between L and SW, TW and I cases.
In other words, the SW and TW flows also have a control point (G2 = 1). We conclude
that the flow within the duct remains isolated from the reservoirs, and hence that it is also
controlled hydraulically. This represents the first direct evidence that SID flows in the W
and I regimes, are also controlled hydraulically at the ends of the duct.

It is worth recalling that the layer-averaged quantities, and consequently the
characteristics, are determined during the quasi-steady state (t > 80) to minimise
the dependency of the results upon different choices of parameters in initial
lock-release conditions. This time period is chosen after the flow statistics converge
independently of parameters in initial conditions (Zhu et al. 2023).
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5.3. Maximal exchange and critical flow rate
In the previous subsection, we showed that all four flow cases (L, SW, TW and I) were
hydraulically controlled in the sense that control points at the ends of the duct isolated the
flow within the duct from processes in the reservoirs, and prevented the flow inside the
duct from reaching velocities exceeding a maximal volume flux Q. In this subsection, we
seek to explain the differences in the value of this critical volume flux (and by extension
mass flux) observed between the L, W and I regimes in figure 6.

In the stable L flow, we find a time-averaged Q ≈ 0.31 well below the absolute upper
bound of 0.5 for instability given by (4.13). This is understood by the frictional hydraulic
theory of Gu & Lawrence (2005), subsequently adapted to the SID in Lefauve & Linden
(2020) (their § 5.2). In short, the relatively low values of the Reynolds number in these
low-tilt L flows mean that viscous friction at the duct walls and at the interface must
be parameterised in the SWEs. This parameterisation allows a correct prediction of the
sloping interface η(x) (a consequence of viscous friction, i.e. loss of momentum along
the flow of each layer), which in turn allows prediction of Q by imposing the criticality
condition at the ends of the duct G2(x = ±A) = 1. Simply speaking, the lower Re and the
longer the duct aspect ratio A, the more friction occurs along the duct, the more offset the
interface |η| becomes at the ends of the duct, and the lower the volume flux Q becomes to
satisfy G2(|η|,Q) = 1 (since G2 is an increasing function of both |η| and Q).

In the unstable SW, TW and I flows, despite the existence of viscous friction, we find a
remarkably consistent time-averaged Q ≈ 0.51 − 0.53, slightly above the critical Qc = 0.5
upper bound for frictionless two-layer hydraulics and a flat interface η = 0 (figure 7).
These values require a different explanation. Although the Reynolds numbers of SW, TW
and I are identical to that of L, their larger tilt angle θ pushes these flows beyond the
instability threshold F2

Δ = 1, corresponding to the transition between ‘lazy’ and ‘forced’
flows (Lefauve et al. 2019). However, Q does not continue to increase with θ . Rather,
beyond the instability threshold, (4.13) suggests that in the centre of the duct (where η ≈
0), Q = 0.5

√
(Δρ)/2 cos θ FΔ, i.e. a linear increase with the stability Froude number. We

deduce that since Q never greatly exceeds 0.5 (the value reached the instability threshold),
the subsequent increase in FΔ > 1 (caused indirectly by the forcing ∝ sin θ in the DNS)
must be compensated by a decrease in Δρ/2 ∝ 1/F2

Δ, i.e. by increased mixing. The data
show that the average Δρ/2 indeed decreases from 0.79 in SW, to 0.76 in TW, to 0.68 in
I. This mixing in turn explains why Qm (≈ (Δρ/2)Q) stays robustly below 0.5 in the SID,
and indeed decreases from the W to the I regime (figure 6).

5.4. Low versus high Prandtl numbers
In this subsection, we study the waves diagnosed from DNS at different values of
the Prandtl number to investigate their indirect dependence on scalar diffusion and the
thickness of the density interface. Although Pr does not appear explicitly in the SWE as
we ignored viscosity and diffusion in (4.6), the DNS dynamics from which the two-layer
properties are extracted certainly depends on Pr. In applications, three typical values are
of particular interest: Pr ≈ 1 (representative of temperature stratification in air), Pr ≈ 7
(representative of temperature stratification in water, as studied in this paper) and Pr ≈ 700
(representative of salt stratification in water).

To study the impacts of diffusion, we carried out two additional DNS with parameters
identical to the TW flow (with Pr = 7) at Pr = 1 and Pr = 28 (the latter requiring a much
higher spatial resolution, hindering the study of higher Pr). In figure 15 we compare the
characteristic curves X(t) and growth rates λI at these three different values of Pr using
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Figure 15. Characteristic curves X(t) and growth rates λI (colours) from DNS data at Re = 650, θ = 6◦ and
(a) Pr = 1, (b) Pr = 7 (TW data), (c) Pr = 28. Note that for easier comparison, (b) is identical to figure 13(c),
though we show data only for t ∈ [80, 220]. Also note the reduced colour map maximum λI (0.5 in this figure,
compared to 0.6 in figure 13).

the same visualisation as in figure 13 (where the Pr = 7 data were already shown as TW).
We find that curves from the Pr = 1 flow initially converge into a central jump and a small
number of peripheral jumps, which eventually merge with the central jump. This pattern
resembles that of the more stable SW flow from figure 13(b), except that it has a higher
growth rate than TW. The curves from the Pr = 28 flow converge into a larger number of
intermediate, travelling jumps before merging into a single jump. This pattern resembles
that of the more unstable I flow from figure 13(d), except that it has a smaller growth rate
than TW.

In figure 16, we compare the characteristics λR(x) and λI(x), as well as the composite
Froude number G2(x) at t = 110 (the Pr = 7 data were already shown in figure 12). All
curves (solid red, dashed blue and dotted green) have essentially the same qualitative
features described earlier, in figure 12. However, as noted in figure 15, the growth rate
appears to decrease slightly with Pr.

The synoptic features of the flow governed by long waves, therefore, appear relatively
unaffected by Pr. This can be rationalised by the fact that primarily, Pr will influence
the thickness of the density interface separating the two layers, rather than its location η
(the locus of ρ = 0) or the speed Q of the flow, which are the two key model variables
in the SWE. In fact, Q = 0.57, 0.56, 0.54 for the three cases Pr = 1, 7, 28, respectively,
showing that Q has a very weak dependence on Pr.

We expect short waves to be more strongly influenced by a decreasing thickness of the
density interface with increasing Pr, and vice versa. However, the short waves observed
in our DNS at Pr = 28 and in experiments at Pr = 700 are Holmboe waves, not the
KH waves supported by our two-layer model. Unlike the KH instability caused by a
single vortex sheet, the Holmboe instability is caused by the resonance of vorticity waves
(e.g. on the edges of a diffuse velocity interface) with a non-collocated gravity wave (on a
sharper density interface) (Carpenter et al. 2011). Lefauve et al. (2018) performed a linear
stability analysis on the experimentally measured mean flow (at Re = 440, Pr = 700),
including viscosity and scalar diffusion. They found that intermediate 1 � k � 2 Holmboe
waves were most unstable (see their figure 6a). However, tackling Holmboe waves – and
their presumed coexistence with the long waves governing hydraulic processes at high Pr
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Figure 16. Characteristics (a) λR, (b) λI > 0 and (c) composite Froude number G2 of TW flows at t = 110.
We compare three different Prandtl numbers (Pr = 1, 7, 28) as in figure 15.
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Figure 17. Dispersion relation (growth rate only) predicted by the TGE two-layer model applied to the DNS
(a) L and (b) TW flows at t = 110. The dashed line at k = 1 represents the boundary between long and short
waves. Short waves are predicted to be most unstable by this inviscid model but appear relatively stable in
reality.

SID – would require a three-layer model (for velocity) mixed with a two-layer model (for
density). The dependence of behaviour of long and short waves upon Pr requires further
study and will be addressed in the future using a three-layer model.

5.5. Long versus short waves
Finally, we study the transition between long waves (the propagation of which is identical
to the local characteristics of the SWE) and shorter KH waves (predicted only by the TGE
of § 4.4). We recall that for k  1, the phase speed cR and growth rate cI of TGE become
identical to λR and λI of SWE, respectively. In this case, the k = 10−2 data of figures 9(a,b)
become indistinguishable from those plotted in figures 7(b,c), respectively.
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Figure 17 shows the linear growth rate cI obtained by substituting into the
Taylor–Goldstein dispersion relation (4.20) (function of k) the two-layer properties (as
functions of x) extracted from the DNS. Diagnostics are shown for the L flow (figure 17a)
and the TW flow (figure 17b) at time t = 110. Unlike the L flow, the TW flow is unstable to
long waves k  1, with the maximal growth rate found near the centre of the duct, as seen
previously in figure 12(b) as we know from (4.21) that cI(k  1) → λI . However, we also
find that the L flow appears mildly unstable to short waves (especially very short waves,
k � 10), and the TW flow appears even more strongly unstable to them. However, we
know that in the DNS, the L flow is visibly stable and does not have observable interfacial
waves, while the TW flow is primarily unstable to long waves (short waves play a more
minor role). This suggests that at least for the present values of Re = 650 and Pr = 7,
the growth of short waves is damped sufficiently by viscosity, mass diffusion and/or other
effects not taken into account in this inviscid two-layer model.

6. Conclusions

In this paper, we employed a two-layer averaging procedure to extract a reduced-order
representation of four main direct numerical simulations (DNS) datasets in the stratified
inclined duct (SID) at Re = 650 and Pr = 7 (with two supplementary datasets at Pr = 1
and Pr = 28). This two-layer representation revealed in § 3 that the flow is stable in
the laminar regime (L, tilt angle θ = 2◦), but develops an internal hydraulic jump
(discontinuity in the layer properties) in the centre of the duct in the stationary wave
regime (SW, θ = 5◦). This jump moves around in the travelling wave regime (TW, θ = 6◦),
and causes further disorganised wave breaking in the intermittently turbulent regime (I,
θ = 8◦) as shown in figure 3(d).

In order to understand these findings, in § 4 we adapted to SID DNS the well-known
inviscid Boussinesq shallow-water equations (SWEs) governing the nonlinear evolution
of long waves (k  1) at a sharp density interface. From an examination of the
characteristics, we found that for the SW and TW regimes, these long waves are unstable
and form internal hydraulic jumps limiting the exchange volume flux. To interpret the
unstable SWE, we compared the characteristics with the dispersion relation from the
inviscid Taylor–Goldstein equation (TGE) governing the linear (normal-mode) stability of
a two-layer base flow. We showed that the global nonlinear characteristics λ(x, t) defined
on the non-parallel base flow and sloping interface of the SWE could be interpreted
locally as the phase speed and growth rate of linear waves in the long-wave limit (i.e.
k  1), propagating on a base flow that is assumed parallel locally. Importantly, this
interpretation is valid only for waves that are much shorter than the duct length 2A
(i.e. k � A−1). This provides a local, linear stability interpretation for unstable two-layer
wave characteristics satisfying A−1  k  1, which is a relevant range in long ducts
(A−1  1). The dispersion relation for the dispersive TGE waves c(k) coincides with the
non-dispersive SWE characteristics λ for k  1, but they also allow us to explore the
smooth transition to shorter (k � 1), non-hydrostatic, Kelvin–Helmholtz (KH) waves.

Applying this two-layer hydraulics and instability framework to the two-layer-averaged
DNS datasets yields the main physical results of this paper presented in § 5. We provided
the first direct evidence that SID flows are, in all regimes (L, SW, TW and I), controlled
hydraulically at the ends of the duct and are thus in a state of maximal exchange. Outside
these control points, the flow is supercritical, thus information from the reservoirs cannot
enter the duct and influence the flow within it. In the SW, TW and I regimes, the flow
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in the duct is always unstable to long waves (F2
Δ > 1) and thus supercritical (G2 > 1),

explaining the existence of the jump within the duct, as a consequence of characteristic
trajectories converging to a single point. In the I regime, characteristic curves converge
gradually and merge into clusters and eventually into a single, stronger jump, resulting in
greater instability.

The emergence of unstable, supercritical flow in the SID beyond a certain tilt angle is
rationalised by the fact that gravitational forcing continuously provides a surplus of kinetic
energy that must be dissipated. From a hydraulics perspective, the required dissipation in
a supercritical flow (i.e. having a surplus of kinetic energy compared to potential energy)
must be associated with a decrease in kinetic energy and an increase in potential energy,
hence a thickening of both layers downstream of the jump. The physical insight of energy
surplus and dissipation was first recognised by Meyer & Linden (2014). It was later
formalised by Lefauve et al. (2019) and Lefauve & Linden (2020), who showed, using
frictional two-layer hydraulics with tilt θ > 0, that the mid-duct interfacial slope obeyed
η′(0) ∝ θ − F, where F > 0 represents viscous friction along the duct. The transition from
subcritical to supercritical flow identified in this paper corresponds to the transition from
‘lazy’ to ‘forced’ flows based on the relative importance of the tilt θ and the duct geometric
angle α = tan−1 A−1 (≈2◦ in this paper). ‘Lazy’ flows are characterised by θ < α, and an
interface sloping gently down. ‘Forced’ flows are characterised by θ > α, and a relatively
flat interface all along the duct. In forced flows, the tendency of θ to tilt up the density
interface exceeds the tendency of frictional losses F to tilt it down, thus η′(0) > 0, which
causes central jumps.

Next, we rationalised the values of the volume flux in all regimes. The value Q ≈ 0.3
in the L regime (lazy flow) is explained by the offset of the interface at the ends of the
duct where control (G2 = 1) takes place, recalling that the sloping interface is caused
by viscous friction along the duct. The asymptotic values Q ≈ 0.5 in the unstable SW,
TW and I regimes (forced flows) are all surprisingly close to the instability threshold
Qc = 0.5 for a symmetric interface. Increasing instability from SW to TW to I as the tilt
angle θ is increased (which theory predicts should increase Q above 0.5) appears balanced
by increasing mixing in the layers. This explains why the maximal exchange threshold
Q = 0.5 predicted by inviscid long wave theory remains a remarkably robust feature of
SID flows, even under turbulence. On the other hand, the mass flux Qm decreases with
increasing forcing, as a result of increasing mixing between the layers.

Using the TGE analysis provided further physical insight into the applicability of
unstable hydraulics. We showed that short inviscid KH waves are always predicted to be
more linearly unstable than long waves, despite the fact that long waves cause the internal
hydraulic jumps observed in SW, TW and I, and appear to dominate the dynamics of
these SID flows. We explained this paradox by the neglect of viscosity in TGE, which
would damp the shortest waves. We also showed that DNS at lower Pr = 1 or higher
Pr = 28 showed two-layer long-wave hydraulics qualitatively (but not quantitatively)
similar to Pr = 7. We also highlighted that experimental observations at Pr = 700 of the
simultaneous existence of unstable long waves (causing an internal jump and supercritical
flow) with finite-amplitude short Holmboe waves could not be explained by the two-layer
model, because it does not support Holmboe waves.

These key ‘hydraulic’ features of SID flows, explaining the emergence of waves,
increasingly supercritical jumps and ultimately turbulence, result from long-wave
instability that relies (tautologically) on the existence of top and bottom solid boundaries
confining the flow in a long, tilted duct. This ‘long-wave’ pathway to turbulence in the SID
appears a priori to differ from the classical ‘short-wave’ KH pathway in an unbounded
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stratified shear layer (see e.g. Caulfield & Peltier 2000; Mashayek & Peltier 2012), often
used as a paradigm for ocean mixing (Mashayek, Caulfield & Alford 2021; Mashayek
et al. 2022). Further work is needed to clarify the relative importance of long and short
waves, and within short waves, of KH and Holmboe waves, and how they contribute to the
transition to turbulence under varying θ , Re and Pr.

The current formulation of the two-layer SWE does not account for the mixing layer
that develops and appears to be important beyond the wave regime. This omission may
reduce the accuracy when investigating detailed spatial features of the flow, such as the
localisation of unstable wave regions in the centre of the duct in TW and SW. Our model is
able to predict the formation of shocks and provide clues to the long-length-scale dynamics
and how it governs the synoptic features of the flow, but further work is needed to represent
accurately the non-hydrostatic processes of turbulent mixing itself.
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Appendix A. Hydrostatic and non-hydrostatic pressure gradients

The assumptions behind the SWE require flows to be dominantly hydrostatic. To validate
this assumption, we explicitly decompose the non-dimensional pressure into a hydrostatic
component defined by

ph(x, z, t) = −Ri cos θ
∫ z

−1
〈ρ〉y(x, ξ, t) dξ, (A1)

and the remaining non-hydrostatic (but still spanwise averaged) component

pnh(x, z, t) = 〈p〉y − ph. (A2)

Figure 18 shows the cumulative density function of the magnitude ratio between ∂ph/∂x
and ∂pnh/∂x in all five datasets L, SW, TW, I and T. We find that the hydrostatic pressure
gradient dominates the non-hydrostatic gradient (i.e. |∂pnh/∂x|/|∂ph/∂x| < 1 in ≥80 % of
the data in the L, SW, TW and I cases, and ≥50 % of the data even in the T case.

Non-hydrostatic effects therefore play a secondary role in all but the T case, and the
two-layer SWEs are expected to model adequately the primary two-layer dynamics of SID
flows forced by relatively small tilt angles θ . However, as the flow becomes turbulent (T
case), non-hydrostatic effects become important, and the applicability of the shallow-water
model breaks down. Turbulence also creates a third layer of intermediate density (see Zhu
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Figure 18. Cumulative distribution function (CDF) of the ratio between non-hydrostatic and hydrostatic
streamwise pressure gradients.

et al. (2023), figures 5e,j) and the two-layer model also breaks down. For these reasons,
we exclude this T case from the analyses of this paper and focus on the L, SW, TW and I
cases.

Appendix B. Derivation of the Taylor–Goldstein equation and solution

In this appendix, we provide additional details regarding the derivation of the inviscid
Boussinesq Taylor–Goldstein equation (TGE) (4.18) for a two-layer SID flow and the
dispersion relation (4.20).

B.1. Governing equation

The linearised inviscid equations for two-dimensional wave-like perturbations [ψ̃, ρ̃, p̃] =
[ψ̂, ρ̂, p̂](z) exp ik(x − ct) around a parallel base flow [U ,R](z) are

(U − c)ψ̂ ′ − ψ̂U ′ = −p̂ − i
k

Ri sin θ ρ̂, (B1)

k2(U − c)ψ̂ = −p̂′ − Ri cos θ ρ̂, (B2)

(U − c)ρ̂ − ψ̂R′ = 0. (B3)

By taking the z derivative of (B1), and using (B2) and (B3), we derive the general TGE as

(U − c)
[

d2

dz2 − k2
]
ψ̂ − U ′′ψ̂ − Ri cos θ R′

U − c
ψ̂ = F,

with forcing F = − i
k

Ri sin θ
[ R′

U − c
ψ̂ ′ + R′′

U − c
ψ̂ − U ′R′

(U − c)2
ψ̂

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B4)

The streamwise component of the gravitational force Ri sin θ appears multiplied by i such
that even if c is real (the waves are stable), increasing the tilt angle will eventually lead to
instability. We neglect this effect here.
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For small tilt angles, we assume F = 0 for simplicity. These unforced TGEs under small
tilt angles will be the focus of the following stability analysis. The unforced TGE (i.e.
F = 0) is then given in (4.18).

Taking the base flow as the two-layer piecewise constant profiles in (4.19a,b) leads to
U ′ = (u1 − u2) δ(z) and R′ = (ρ1 − ρ2) δ(z), where δ is the Dirac delta function. Since
U ′′ = R′ = 0 everywhere except at the interface, the TGE becomes trivial:

ψ̂ ′′ − k2ψ̂ = 0. (B5)

B.2. Solution with solid top and bottom walls
In this bounded duct configuration, we take a solution of the form

ψ̂ =
{

C1 sinh k(h1 − z), 0 < z ≤ h1,

C2 sinh k(h2 + z), −h2 ≤ z < 0,
(B6)

which satisfies the no-penetration condition at z = −h2 and z = h1 (ŵ = ikψ̂ = 0)
modelling the presence of top and bottom boundaries.

Following Drazin & Reid (2004), the matching conditions are derived by integrating
(4.18) over the neighbouring region of the interface, and by using the integral property of
the Dirac delta function, leading to[[

ψ̂

U − c

]]
0

= 0, (B7)

[[Uψ̂ ′ − cψ̂ ′]]0 + Ri Δρ cos θ

(
ψ̂

U − c

)
z=0

= 0, (B8)

where we recall that Δρ ≡ ρ2 − ρ1. Condition (B7) guarantees continuity of the
streamfunction across the interface (and thus the wall-normal velocity). Together, the first
and second terms in condition (B8) guarantee continuity of the pressure modes p̂ based on
(B1). Note that [[U ′ψ̂]]0 vanishes as U ′ = 0 on either side of the interface, and U ′ → ∞
at the interface. The last term in (B8) guarantees continuity of the density modes ρ̂ based
on (B3). Using these two conditions, we can solve for C1 and C2, leading to the following
algebraic system of equations:

C1 sinh kh1(u2 − c)− C2 sinh kh2(u1 − c) = 0, (B9)[
−(u1 − c)k cosh kh1 + Ri

Δρ

2
cos θ

sinh kh1

u1 − c

]
C1

+
[
−(u2 − c)k cosh kh2 + Ri

Δρ

2
cos θ

sinh kh2

u2 − c

]
C2 = 0. (B10)

To have a non-trivial solution, the determinant of the above 2 × 2 system must be zero,
resulting in the dispersion relation (4.20).

B.3. Solution without solid top and bottom boundaries
In the unbounded configuration, we instead take a solution of the form

ψ̂ = C exp (−k|z|), (B11)

satisfying continuous and finite ψ̂ for all z (Smyth & Carpenter 2019).
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Figure 19. Growth rate cI of long waves on smooth velocity and density profiles, obtained by a numerical
solution of the TGE (4.18) as the volume flux Q is increased (black curves). (a) Hyperbolic-tangent profiles for
velocity U(z) and density R(z) profiles of increasing interface thickness. (b) Sinusoidal profiles for velocity
U(z) (and same R(z) as in (a)). The growth is always slower than it would be using the sharp two-layer
analytical solution (4.20) (red curves).

Substituting (B11) into (B8), we obtain

− (u1 − c)2k − (u2 − c)2k − Ri Δρ cos θ = 0 (B12)

and thus the dispersion relation for KH waves plotted in figure 9(c):

c = u1 + u2

2
±

√√√√Ri
Δρ

2
cos θ

k
− (u1 − u2)2

4
. (B13)

The KH instability (cI /= 0) is thus found for

k >
2 Ri Δρ cos θ
(u1 − u2)2

. (B14)

Appendix C. Sharp versus smooth two-layer flow profiles

To complement our analytical results, in this appendix, we study the influence of smooth
density and velocity profiles U(z) and R(z) on the growth rate of long waves. To do
so, we solve the eigenvalue problem from the TGE (4.18) directly, without making the
two-layer base flow ansatz (4.19a,b). Numerical solutions for the growth rate cI are shown
in figure 19 as functions of Q. In figure 19(a), we show the results for hyperbolic-tangent
U(z)/Q = R(z) = tanh z/δ, where the interface thickness is decreased progressively from
1/80 (almost exactly two layers, solid lines) to 1/8 (dashed lines) to 1/4 (thicker interface,
dotted lines). We compare these ‘smooth tanh’ growth rates (in black) to the equivalent
‘sharp two-layer’ growth rates (in red) obtained from the analytical dispersion relation
(4.20) by layer-averaging the tanh profiles (in which case cI = λI). In figure 19(b), we
keep the same density profiles but use U(z)/Q = − sin πz, which is a good approximation
to the mean velocity at these relatively low values of Re = O(102 − 103).
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Both figures 19(a,b) show that the Qc = 0.5 threshold for long-wave instability is
virtually unchanged by smooth profiles, with only a slight increase of a few per cent for
the thickest interface, δ = 1/4. This result supports the relevance of two-layer hydraulics
even in ‘real-world’ flows which depart significantly from the two-layer model.

However, the ‘smooth tanh’ growth rates are always lower than the corresponding ‘sharp
two-layer’ growth rates. The thicker the interface, the lower the ‘smooth tanh’ growth
rate. Comparing the vertical scale in figures 19(a,b), we conclude that the sinusoidal
velocity profile is more stable (by approximately a factor of 10) than the tanh profile.
The combination of a sinusoidal velocity and a diffuse velocity interface (dotted blue
line in figure 19b) yields the slowest growth as Q increases. As such profiles are a
better approximation of the mean flow of the DNS at low Pr (e.g. Pr = 1) than sharp
two-layer profiles, these results warn us not to interpret too literally the large growth rates
λI = O(0.1) found in this paper.

In conclusion, although the qualitative predictions of two-layer hydraulics are robust (in
particular the long-wave instability threshold Qc) when the underlying data are not exactly
two-layer, the quantitative growth rate predictions are overestimated when the interface is
very diffuse, as in low-Pr flows.
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