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We investigate the linear instability of two-layer stratified shear flows in a sloping
two-dimensional channel, subject to non-zero longitudinal gravitational forces. We reveal
three previously unknown instabilities, distinct from the well-known Kelvin–Helmholtz
instability and Holmboe wave instability, in that they have longer wavelengths (of the
order of 10 to 103 shear-layer depths) and often slower growth rates. Importantly, they
can grow in background flows with gradient Richardson number � 1, which offers a
new mechanism to sustain turbulence and mixing in strongly stratified flows. These
instabilities are shown to be generic and relatively insensitive to Reynolds number, Prandtl
number, base flow profile and boundary conditions. The nonlinear evolution of these
instabilities is investigated through a forced direct numerical simulation, in which the
background momentum and density are sustained. The growth of long unstable waves in
background flows initially stable to short wave causes a decrease in the local gradient
Richardson number. This leads to local nonlinear processes that result in small-scale
overturns resembling Kelvin–Helmholtz billows. Our results establish a new energy
exchange pathway, where the mean kinetic energy of a strongly stratified flow is extracted
by primary unstable long waves and secondary short waves, and subsequently dissipated
into internal energy.

Key words: stratified flows, shear-flow instability, transition to turbulence

1. Introduction

The study of stratified flows has attracted considerable attention over the past few decades
due to their importance in many environmental and industrial processes. In the oceans,
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stratification occurs due to differences in salinity and/or temperature, leading to mostly
stably stratified flows. Turbulence in these flows plays a significant role in the transport of
momentum and mass and is crucial in shaping the global climate (Linden 1979; Riley &
Lelong 2000; Gregg et al. 2018; Caulfield 2020). An interesting open question concerns
the maintenance of turbulence and its associated irreversible turbulent mixing under strong
stable stratification, which tends to suppress turbulence.

When stratification is relatively weak, stably stratified flows can be linearly unstable. It is
well known that linear shear instabilities, such as the Kelvin–Helmholtz instability (KHI)
(Hazel 1972; Smyth, Klaassen & Peltier 1988) and Holmboe wave instability (HWI)
(Holmboe 1962), can cause transition of a laminar stratified flow to turbulence, inducing
strong mass and momentum transport (Caulfield 2021). Over the past 50 years, numerous
studies have been carried out to understand these instabilities and their relation to mixing
(Thorpe 1968; Smyth et al. 1988; Carpenter et al. 2010b; Salehipour, Peltier & Mashayek
2015; Zhou et al. 2017). In most of these studies, the density isopycnals are perpendicular
to the direction of gravity, which does not explicitly drive the flows.

However, in many natural systems, density isopycnals are not exactly perpendicular
to gravity, in which case non-zero streamwise gravity forces come into play and may
partially drive the flow. One notable example is the internal tide interacting with the
sloping bottom topography of the oceanic continental shelf (Garrett & Kunze 2007). At
a critical slope, the internal tide provides an additional energy production pathway that
leads to turbulent mixing of temperature, salinity and other tracers (Gayen & Sarkar 2010).
Similarly, many engineering flows occur along an inclined boundary. Examples can be
found in building ventilation systems (Linden 1999), where indoor/outdoor air is often
exchanged through inclined ventilation ducts, producing mixing and dispersion of heat
and indoor pollutants. In gas-cooled nuclear reactors, a failure of a cooling duct will result
in a turbulent exchange flow between the carbon dioxide inside and the outside air, which is
critical to the modelling of depressurisation accidents (Leach & Thompson 1975; Mercer
& Thompson 1975).

Studies on the influence of longitudinal gravitational forcing on the onset of turbulence
in stratified exchange flows remain limited. One notable recent body of work is the
stratified inclined duct (SID) experiment (Meyer & Linden 2014; Lefauve, Partridge &
Linden 2019; Lefauve & Linden 2020). These studies investigated the transition and
turbulent mixing of the exchange flow in an inclined duct that connected two reservoirs
with fluids at different densities or temperatures. To understand the mechanism of
transition in SID, Lefauve et al. (2018) conducted a linear stability analysis (LSA) using
a base state extracted from the SID experiment. Subsequently, Ducimetière et al. (2021)
systematically investigated the three-dimensional (3-D) unstable modes in inclined ducts,
focusing on the effects of sidewall confinement. These studies focused primarily on HWI
(and secondarily on KHI), which have wavelengths comparable to the thickness of the
shear layers. Interestingly, Ducimetière et al. (2021) observed a secondary instability at
significantly longer wavelengths than KHI and HWI and attributed it to the effect of the
tilt angle. Recently, Atoufi et al. (2023) studied the mechanism of transition by applying
shallow water equations as a diagnostic tool to analyse a new numerical simulation
database of SID (Zhu et al. 2023a). They suggested that the instability of long shallow
water waves (i.e. a long-wave KHI in the presence of top and bottom solid boundaries) may
cause turbulence in the SID. Although the longitudinal gravitational forcing was included
in the numerical simulation data, it was not included explicitly in the shallow water model.

In this paper, we explore explicitly the impact of longitudinal gravitational forces on the
instability of long waves and on potential new pathways towards turbulence, restricting
ourselves to a two-dimensional (2-D) geometry. In § 3, we examine the linear instabilities
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Figure 1. (a) Schematic of the 2-D shear flow in a stratified channel inclined at an angle θ , and (b) base velocity
U(z), density R(z) and corresponding background gradient Richardson number Rib(z) ≡ Ri(dR/dz)/(dU/dz)2

profiles computed from (2.10) and (2.11).

in inclined channels and conduct a thorough exploration of the parameter space.
We identify three new families of long-wave instabilities distinct from the well-known
HWI and KHI, and map in parameter space these long-wave instabilities that dominate the
flow. In § 4, we then investigate the evolution of these new instabilities by conducting 2-D
forced direct numerical simulations (DNS), and discuss their impact on turbulence and
energy transfers. Finally, we conclude in § 5.

2. Methodology

2.1. Problem formulation and governing equations
In this section, we present the equations required for LSA of a stratified exchange flow
between two fluid layers having density ρ0 ±�ρ/2 (where ρ0 is the reference density
and 0 < �ρ � ρ0 is the density difference) in a 2-D stratified inclined channel (SIC, see
figure 1a). Following the SID experimental literature, lengths are non-dimensionalised by
the half-channel height H∗, velocity by the buoyancy-velocity scale U∗ ≡ √

g′H∗ (where
g′ = g�ρ/ρ0 is the reduced gravity), time by the advective time unit H∗/U∗, pressure
by ρ0U∗2 and density variations around ρ0 by �ρ/2, respectively. The non-dimensional
continuity, Navier–Stokes and scalar equations under the Boussinesq approximation are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + Riρĝ, (2.2)

∂ρ

∂t
+ u · ∇ρ = 1

Re Pr
∇2ρ, (2.3)

where u = (u, v,w) is the non-dimensional velocity in the 3-D coordinate system x =
(x, y, z), where the x, y, z axes are the longitudinal, spanwise and wall-normal direction
of the channel, respectively. In this coordinate system gravity g is pointing downwards
at a angle θ to the −z axis, i.e. g = gĝ = g[sin θ, 0,− cos θ ], and p and ρ are the
non-dimensional pressure and density, respectively. The dimensionless parameters are
the Reynolds number Re ≡ H∗U∗/ν (ν is the kinematic viscosity), the Prandtl number
Pr ≡ ν/κ (κ is the scalar diffusivity) and Richardson number Ri ≡ g′H∗/(2U∗)2 = 1/4
(fixed here because of the buoyancy velocity scale).
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2.2. Formulation of LSA
We now apply a LSA (Drazin & Reid 2004; Smyth & Carpenter 2019) to the SIC. Lefauve
et al. (2018) and Ducimetière et al. (2021) have shown that the fastest-growing mode is
2-D so we impose infinitesimal 2-D perturbations to a one-dimensional base state. The
velocity, density and pressure fields are thus decomposed as

u = U + u′ = [U(z), 0, 0] + [u′, 0,w′], (2.4)

p = P(z)+ p′, (2.5)

ρ = R(z)+ ρ′, (2.6)

where capital letters and superscript primes represent the mean and perturbation
components of quantities, respectively. A normal mode perturbation of the form

φ′(x, z, t) = φ̂(z) exp (ikx + ηt), (2.7)

is adopted. The base flows are obtained by solving for the numerical solution of the laminar
exchange flow following Thorpe (1968), which will be introduced in § 2.3. Substituting
(2.4)–(2.6) into (2.1)–(2.3) and linearising yields the same system as in Lefauve et al.
(2018), i.e.

η

[
� 0
0 I

] [
ŵ
ρ̂

]
=

[ Lww Lwρ
Lρw Lρρ

] [
ŵ
ρ̂

]
, (2.8)

where 0 and I are the zero and identity matrices, respectively, and

Lww = −ikU�+ ikD2U + Re−1Δ2,

Lwρ = Ri
(

k2 cos θ − ik sin θD
)
,

Lρw = −DR,

Lρρ = −ikU + (Re Pr)−1�,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.9)

where Δ = D2 − k2 (the operator D = ∂/∂z and D2 = ∂2/∂z2). At the top and bottom
boundaries (z = ±1), no-slip and no-flux boundary conditions are applied for velocity
and density, respectively. We also demonstrate the negligible effect of choosing a free-slip
boundary condition for velocity in the Appendix A. To obtain the unstable modes, we solve
the linear system (2.8) numerically using a second-order finite-difference discretisation
described in Smyth & Carpenter (2019). The spatial resolution is chosen based on the
sharpness of the interface and is (150, 150, 250, 400) grid points for Pr = (1, 7, 28, 70),
respectively (a sensitivity analysis for resolution ensured the convergence of the LSA
results).

2.3. Base flows
The base state for density in our exchange flow is taken as a hyperbolic tangent (figure 1b)

R(z) = − tanh(z/δ) = − tanh(2
√

Pr z). (2.10)

The interfacial thickness is δ = 1/(2
√

Pr) to approximate the effect of diffusion (Smyth
& Peltier 1991). This empirical relation of Pr to the interfacial thickness is based on
experimental and numerical observation of SID (Lefauve et al. 2018; Zhu et al. 2023a).
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The typical model (e.g. Smyth et al. 1988) considers a shear layer driven by an arbitrary,
controllable background shear. A similar procedure is applied to our SIC by modifying the
laminar solution developed by Thorpe (1968) and imposing a background body force F =
−γRiR(z) (where γ is a variable to control the magnitude of the force). This decouples
the base velocity from the slope in SIC, allowing for the exploration of the U − θ space,
as if being influenced by arbitrary external tidal forces or pressure gradients. The mean
velocity profile U(z) of the steady laminar exchange flow is obtained by integrating the
2-D momentum equation

−∂P
∂x

+ RiR sin θ + 1
Re
∂2U
∂z2 + F = 0, (2.11)

where −∂P/∂x = 0 to satisfy the zero-flux condition of SIC. This yields the following
laminar base state for the forced SIC:

U(z) = −Re Ri(sin θ − γ )I(z)+ c1z + c2, (2.12)

where

I(z; Pr) = z2

2
+ ln 2δz + δ2 Li2

(−e2z/δ)
2

, (2.13)

where Li2 is the polylogarithm function of order two. The constants c1 and c2 are computed
given the no-slip boundary condition at the walls U(z = ±1) = 0 and are

c1 = 1
2 Re Ri(sin θ − γ ) [I(1)− I(−1)] , (2.14)

c2 = 1
2 Re Ri(sin θ − γ ) [I(1)+ I(−1)] . (2.15)

This solution U(z) is sinusoidal-like (figure 1b), much like those observed in experiments
and simulations (Lefauve et al. 2018; Zhu et al. 2023a). The magnitude of the base velocity
depends on Re, θ and γ , while the shape depends more on δ. In addition to the base
state described by (2.12), we also conducted a LSA with a tanh-shape velocity profile in
Appendix A, to compare with the standard stratified free-shear layer model (Smyth et al.
1988). These results were qualitatively consistent with those in the remainder of the paper,
in terms of the existence of the same long- and short-wave families in SIC, suggesting the
robustness of our results under broader flow conditions. A comprehensive investigation of
the effects of background profiles is beyond the scope of this paper.

3. Results: new families of linear instabilities in SIC

Here we present the results from the LSA of SIC. We explore the parameter space of θ − γ

and map out three new families of long-wave instabilities in addition to the well-known
short-wave HWI and KHI. We also investigate the impacts of Re and Pr in order to further
understand the importance of these newly discovered long waves in the laminar–turbulent
transition.

3.1. Five families of instabilities
We first fix (Re,Pr,Ri) = (1000, 7, 0.25) and vary the slope θ from −10◦ to 10◦. When
θ > 0, the SIC slopes downwards. In this configuration, streamwise gravity energises
the mean flow, and vice versa when θ < 0. We vary the forcing factor γ , on which two
important physical quantities depend: the interfacial background Richardson number Rib,
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defined as the gradient Richardson number of the background flow at the density interface
z = 0, i.e.

Rib ≡ Ri
dR/dz
(dU/dz)2

∣∣∣∣
z=0

; (3.1)

and the mass flux (or flow rate of buoyancy), which is given by

Qm ≡ 1
2

∫ 1

−1
RU dz. (3.2)

The Richardson number Rib is an important measure of the relative importance of
stratification compared with shear, which is critical for stratified shear flow stability
(Caulfield 2020). The mass flux Qm is closely associated with the hydraulic control of
exchange flows; a threshold value of Qm ≈ 0.5 indicates the existence of an internal
hydraulic jump (Meyer & Linden 2014; Lefauve et al. 2019) which Atoufi et al. (2023)
demonstrated to be equivalent to a relatively long KHI (requiring the existence of top and
bottom boundaries). Note that, in accordance with the definition of the base state (featuring
asymmetric R and U relative to z = 0), the condition Qm = 0 implies U( y) = 0.

Figure 2(a,c) shows the distribution of the growth rate ηr and wave frequency ηi (and
phase speed c = −ηi/k) of the fastest-growing modes in the parameter spaces (θ,Rib) and
(θ,Qm), respectively. Note that ηr and ηi are the real and imaginary components of the
eigenvalues of the linear system (2.8). Examining the contour lines reveals five distinct
families of unstable modes, shown schematically in figure 2(b,d). To better understand
these modes, we show the dispersion relation of five representative cases (marked by the
symbols in figure 2) dominated by the five families of instabilities in figure 3. Notably, two
of these unstable modes, namely the HWI and KHI, can be triggered without the presence
of a slope (θ = 0, see vertical dotted black line). The other three families of modes rely
on the presence of a slope (θ /= 0) and are named long-wave instability (LWI), downslope
very long-wave instability (DVLWI) and upslope very long-wave instability (UVLWI)
based on their longer wavelengths (O(10 ∼ 104)) compared with the ‘short’ HWI and KHI
(O(10−1 ∼ 10)). To the best of our knowledge, these unstable modes have not previously
been reported in the literature.

We find that the features of these instabilities are generally insensitive to the shapes
of base profile and boundary conditions, despite adopting a base profile (2.12) and
no-slip boundary in this section. To support this, we show in the Appendix A that these
instabilities are found using a tanh-shape base state and free-slip boundary condition, as
used by Smyth & Winters (2003). This suggests that these instabilities can exist in a wide
range of stratified exchange flows along a slope. In the following sections, we characterise
the five families of unstable modes in more detail.

3.1.1. Holmboe wave instability
The HWI (Holmboe 1962) occurs when the density interface is thinner than the shear layer
and results from the resonance between vorticity waves at the edges of the shear layer and
internal gravity waves at the density interface (Caulfield 1994; Carpenter et al. 2010b). It
gives rise to a pair of counter-propagating growing modes on either side of the density
interface.

In SIC, the regime dominated by HWI exists from θ = −10◦ to 2◦ and Rib = 0.3 to
4 (Qm = 0.1 to 0.3) in figure 2. The dispersion relation of HWI is shown in figure 3,
where HWI has a pair of complex conjugate eigenvalues with non-zero phase speed
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Figure 2. Parameter space projections of the fastest growing mode: (a) the growth rate ηr (colours) and wave
frequency ηi (lines); (b) mode type, both in the Rib − θ parameter space; (c) the growth rate ηr and wave
frequency ηi; and (d) mode type, both in the Qm − θ parameter space. Markers represent the five cases I,. . . , V
in table 1 for which the fastest growing mode is calculated. Black solid lines are the natural convective ‘Thorpe’
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Figure 3. Dispersion relations for typical cases from figure 2: (a) positive growth rate ηr versus wavenumber
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c = −ηi/k. It is well known that horizontal stratified shear flows can become unstable
at Rib > 0.25 given a base flow with sufficiently large thickness ratio between the shear
layer and density layers (Smyth et al. 1988; Alexakis 2009), leading to HWI. In this
scenario, the minimum gradient Richardson number min(Rig(z)) < 0.25 ≤ Rib, and the
Miles–Howard criterion (Howard 1961; Miles 1961), which, strictly speaking, is intended
for steady, inviscid Boussinesq flows, can still be applied to Rig(z) (Smyth et al. 1988;
Caulfield 2021). In figure 2, HWI can sustain at Rib ∼ 10. We also notice that HWI can be
induced over a wide range of θ . The HWI-dominated regime gradually shrinks from θ < 0
to θ ≈ 2◦. This indicates that increasing downward slopes have a damping effect on HWI,
a phenomenon that has not been previously discussed in the literature and constitutes a
new result.

3.1.2. Kelvin–Helmholtz instability
The KHI arises due to the interaction of vorticity waves at two edges of finite shear layers,
leading to a sequence of stationary vortex billows that roll up the denser fluids and cause
significant mixing (Hazel 1972; Smyth & Peltier 1991; Carpenter et al. 2011). However,
unlike these previous studies (with the exception of the recent studies (Atoufi et al. 2023;
Liu, Kaminski & Smyth 2023)) the KHI observed here in the SIC geometry is bounded by
no-slip solid boundaries at z = ±1.

In SIC, KHI has a zero phase speed and a characteristic wavelength of π, consistent
with previous studies by Smyth & Carpenter (2019), Caulfield (2021) and Smyth &
Peltier (1991). The KHI dominates the flow at small Rib � 0.25, in agreement with the
Miles–Howard criterion. Interestingly, like HWI, the longitudinal gravity force can affect
the regimes of KHI. The upper bound of the KHI-dominant regime in figure 2(a) increases
linearly from Rib = 0.15 to 0.25 as θ increases from −10◦ to 10◦. This suggests an
enhancement of KHI by a downward slope, which we believe to be an additional new
result.

3.1.3. Long-wave instability
Of the three new instabilities that arise with slopes, the LWI dominates the flow at large
downward slopes (θ > 4◦) and a weak shear (strong stratification). In contrast to KHI and
HWI, the LWI has a longer wavelength (O(10 − 102)). Note that the LWI discussed in
this paper is distinct from the long waves supported by shallow-water (hydraulic) theory
(Lawrence 1990; Atoufi et al. 2023) which are essentially Kelvin–Helmholtz (KH) waves
with a large k (satisfying the hydrostatic approximation) and which can exist at θ = 0.
The LWI, on the other hand, specifically requires θ /= 0. As depicted in figure 3, its phase
speed is near-zero. This instability can be triggered at Rib � 1, at which the shear-induced
HWI and KHI vanish. Note that the presence of a mean shear can affect LWI by modifying
its growth rate and phase speed. In terms of wave interaction, since vorticity waves vanish
as Qm → 0, we hypothesise that LWI is a result of the interaction between gravity waves
at the density interface and the streamwise gravity force. We will delve into this aspect
in greater detail in § 3.3. We also note that the Qm = 0 condition may be arbitrary when
subjected to a non-zero slope, as it requires the gravity and pressure forces to be precisely
cancelled by external body forces F in (2.11). In practice, such a precisely balanced
condition is expected to be rarely observed.
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3.1.4. Downslope very long-wave instability
The new DVLWI shares similarities with the LWI, in that it can exist at weak shear
(strong stratification) and has a long wavelength. However, DVLWI dominates the flow
under different conditions, namely when 2◦ < θ < 5◦ and Rib > 0.25 (Qm < 0.5). It
is also characterised by very long wavelengths of O(102 − 103) (wavenumbers k =
O(10−3) ∼ O(10−2)) and, interestingly, a pair of eigenmodes with complex conjugate
phase speeds (figure 3). As with the HWI, we thus expect a pair of unstable DVLWI modes
propagating with opposite phase speeds. The evolution of these unstable long waves and
their connections to the onset of turbulence will be further discussed in § 4.

3.1.5. Upslope very long-wave instability
For θ < 0, i.e. for upward slopes, another type of very long-wave instability (UVLWI)
appears with wavelengths ≥ 102 (wavenumbers k < O(10−2)) and a zero phase speed
(figure 3). This instability is similar to LWI and DVLWI in that it requires a slope (θ /= 0)
and can exist in a strongly stratified environment. Contrary to the usually significantly
smaller growth rate of the long waves compared with the corresponding short waves, the
UVLWI has in fact a comparable growth rate as HWI; this will be further discussed in
§ 3.5.

Importantly, these long-wave instabilities have the potential to trigger and sustain
turbulence in strongly stable stratified flows, which are a priori regarded as stable. In
§ 4 we will show that these new instabilities can indeed destabilise the flow at Rib > 1,
eventually resulting in nonlinear bursting and a transition to turbulence and mixing. It
is also important to note that figure 2 only shows the fastest growing modes, whereas
multiple families of instabilities can coexist in certain regions, as shown in figure 3. As
a result, the regions of instability overlap, and the neutral boundary of each instability
cannot be identified from figure 2. In § 3.5, we will address this challenge by introducing
an unsupervised clustering technique to isolate the neutral boundary of each family.
Furthermore, in figure 2, we include a black line computed from γ = 0, i.e. the natural
convective ‘Thorpe’ base state with forcing F = 0. Under the parameters discussed so far
(Re = 1000, Pr = 7), this line does not intersect any long-wave instabilities in parameter
space. Nonetheless, it is important to note that different Re and Pr or boundary conditions
can modify the regimes of the long-wave instability and interact with the base flow. An
example is demonstrated in § 3.6 for Pr = 28.

3.2. Link between long- and short-wave instabilities
In figure 4, we show a more comprehensive exploration of the new LWI, DVLWI and
UVLWI and their relation to the widely studied HWI and KHI by plotting the dispersion
relation (fastest growth rate and associated frequency) in the background Richardson
number – wavenumber space (Rib, k), as in many related studies (Smyth & Peltier 1991;
Carpenter, Balmforth & Lawrence 2010a; Smyth & Carpenter 2019). Comparing four
slopes θ = −6◦, 0◦, 2◦ and 6◦ we find that the unstable long waves are generally dominant
at small wavenumbers k < 10−1 and moderate to high Rib. In contrast, KHI and HWI are
sustained at larger wavenumbers k > 10−1.

As θ increases from figure 4(a–d), the space of HWI narrows along the vertical Rib axis
and ultimately disappears at θ = 2◦. Simultaneously, the DVLWI appears at θ = 2◦ and
occupies a substantially wide range of Rib. Considering its non-zero phase speed, it seems
tempting to relate the DVLWI to the higher Holmboe modes of Alexakis (2009), which can
also persist at high Rib. However, we note that the DVLWI cannot survive at θ = 0 where
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Figure 4. Parameter space (Rib − k) projections of the fastest growing mode: growth rate ηr (colours) and
frequency ηi (lines) at slopes θ equal to (a) −6◦; (b) 0◦; (c) 2◦; (d) 6◦.

the higher Holmboe modes were reported. In addition, the DVLWI can sustain itself as
Qm → 0, a condition where vorticity waves, a crucial component in the HWI and KHI,
are absent. This highlights the unique nature of the DVLWI, setting it apart from higher
Holmboe modes.

It is also interesting to observe that a distinct boundary between LWI and KHI is not
clear at θ = 2◦ and 6◦, suggesting a possible physical connection between these two
modes. While it is true that LWI appears sensitive to the shear, we also notice that LWI
is absent at θ = 0 (where KHI persists) and can exist without shear (required by KHI),
hinting at the different nature of LWI compared with KHI.

In the next section, we will discuss the mechanism giving rise to these long waves
through the sloping inviscid Taylor–Goldstein (TG) equation.

3.3. Mechanism of long waves
A comprehensive understanding of these long waves would require an examination of
wave interactions (Carpenter et al. 2011; Eaves & Balmforth 2018). However, solving the
viscous TG equation with a streamwise gravity component is beyond the scope of this
paper. To draw preliminary insights into the physical mechanism behind these long wave
instabilities, we analyse the sloping inviscid TG equation (derivation found in Atoufi et al.
(2023)),

(U − c)
[

d2

dz2 − k2
]
ψ̂︸ ︷︷ ︸

vorticity generation

= d2U
dz2 ψ̂︸ ︷︷ ︸

kinematic generation

+ Ri cos θ (dR/dz)
U − c

ψ̂︸ ︷︷ ︸
baroclinic generation

+ F︸︷︷︸
gravity forcing

, (3.3a)

with

F = − i
k

Ri sin θ

[
dR/dz
U − c

dψ̂
dz

+ d2R/dz2

U − c
ψ̂ − (dU/dz) (dR/dz)

(U − c)2
ψ̂

]
, (3.3b)

where ψ̂(z) is the perturbation stream function, and c ∈ C is the phase speed of the plane
waves. The slope θ introduces a gravity forcing term F , in addition to the kinematic and
baroclinic terms that are responsible for the generation of vorticity waves and internal
gravity waves, respectively.
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Long-wave instabilities of sloping stratified exchange flows

Instability Case Re Pr Rib Qm θ (deg.) γ k ζ Lx Nx × Nz

HWI I 1000 7 1.1 0.21 0.5 −0.0028 1.5 0.2 4.2 320 × 144
KHI II 0.19 0.49 2 0.0077 1.5 10−6 4.2 320 × 144
LWI III 1.1 0.21 6 0.093 0.089 0.01 70.5 960 × 144
DVLWI IV 1.1 0.21 3 0.041 0.020 0.5 314.9 6000 × 144
UVLWI V 0.35 0.37 −6 −0.125 0.014 0.5 444.7 6000 × 144

Table 1. Numerical parameter values used for the DNS runs.
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Figure 5. Eigenfunctions of the fastest growing modes for the five cases given in figure 2 and table 1: (a,b) I,
HWI; (c,d) II, KHI; (e, f ) III, LWI; (g,h) IV, DVLWI; (i,j) V, UVLWI. Here (a,c,e,g,i), vorticity eigenfunctions;
(b,d, f,h,j), density eigenfunctions.

Diagnosing (3.3), we find that the emergence of long-wave instabilities may be a result
of interactions between the gravitational forcing and the baroclinic terms. This hypothesis
is supported by (a) the elimination of long-wave instabilities when F vanishes as θ → 0,
implying the essential role of F and (b) the persistence of these instabilities as the
kinematic term vanishes in the limit Qm = 0, suggesting a lack of association with vorticity
waves. In addition, the magnitude of F follows 1/k and can thus undergo substantial
amplification as k → 0, implying that vorticity production in the long wave limit may
be prominently influenced by the forcing term.

In the following sections, we will look into the characteristics of these long waves and
their connection to turbulence.

3.4. Eigenfunctions
Further insights into these SIC instabilities are gained by examining their eigenfunctions
expressed in (2.7) for representative cases (see figure 2 and table 1). Note that the shape of
the eigenfunction might change slightly depending on the selected linear mode. In figure 5,
we present the vorticity (figure 5a,c,e,g,i) and density (figure 5b,d, f,h,j) eigenfunctions
of the fastest growing modes for cases I,. . . , V, marked in figure 2, each of which
represents one of the five branches of instabilities: HWI, KHI, LWI, DVLWI and UVLWI,
respectively. Note that the x axis in these cases has been rescaled to compare modes
having very different wavelengths. In figure 5, the wavelengths of HWI and KHI are,
approximately, 4, while LWI, DVLWI, and UVLWI are 70, 300 and 420, respectively.
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The density eigenfunctions of all modes are concentrated near the interface, indicating
the critical role of stratification. Near the walls, the intensity of vorticity eigenfunctions is
large due to the no-slip effects of the walls. (Note that, with a free-slip velocity boundary
condition, the corresponding modes do not exhibit this intense vorticity at the wall, see
the Appendix A.) In the shear layer, one of the HWI modes plotted here (left-propagating)
exhibits two pairs of counter-rotating roll cells centred at z ≈ 0.5. For KHI, the vorticity
and density eigenfunctions are highly concentrated at the interface, leaving a weaker bulk
region in the rest of channel. By contrast, the vorticity eigenfunctions of LWI, DVLWI and
UVLWI fill the channel.

3.5. Neutral boundaries of instabilities
As mentioned in § 3.1, different families of instabilities can coexist at the same parameters,
making it difficult to determine the neutral boundary of each family from the distribution
of fastest growing modes in figure 2. To identify the different neutral boundaries we
employ the unsupervised machine learning algorithm DBSCAN (density-based spatial
clustering of applications with noise) (Ester et al. 1996). The DBSCAN algorithm clusters
the local maxima of the dispersion relation (figure 3a) of all the cases in figure 2 using
k, ηr and ηi as input variables. These variables are first logarithmically transformed and
normalised before being fed into DBSCAN for clustering. Note that DBSCAN groups the
local optimal modes of LWI and UVLWI together in a single cluster due to their similarity
in k, ηr and ηi. An additional step is taken to distinguish between the two branches by
using the fact that LWI occurs when θ > 0, while UVLWI occurs when θ < 0.

The clustering analysis in figure 6(b–f ) reveals the regimes of different families of
instabilities, which could not have been identified by simply looking at the distribution
of fastest amplifying modes (figure 6a). The KHI regime (figure 6c) exactly matches
the distribution of the fastest amplifying modes (figure 6a), while other modes (LWI,
DVLWI, UVLWI) that overlap with KHI are omitted. This suggests that KHI always has
the fastest growth rate. For HWI (figure 6b), increasing θ clearly decreases the growth rate
while shrinking its ‘territory’, causing it to disappear when θ > 2◦. When θ is fixed, the
fastest growing HWI appears at Rib ≈ 1, while the growth rate decreases as Rib departs
from 1. The territory of HWI overlaps with UVLWI (figure 6f ) which can exist when
θ < −0.5◦. The growth rate of these two modes is comparable so that figure 6(a) cannot
display the neutral boundaries of these two modes properly. As for LWI (figure 6d), it
generally persists at large positive θ except for Rib � 0.2. The critical θ for the appearance
of DVLWI (figure 6e) is ≈ 2.5◦. It overlaps with KHI and LWI at large θ and small
Rib, respectively, but is mostly omitted in the plot of the fastest growing mode due to
its relatively small growth rate.

In general, these long-wave families of instabilities can persist across a wide range
of Rib, ranging from Rib � 0.25 (especially for DVLWI and UVLWI) to Rib � 1.
Consequently, we anticipate their widespread presence in sloping stratified exchange flows.

3.6. Effect of Reynolds and Prandtl numbers
In this section, we study the impacts of Re and Pr on these different families of instabilities.

3.6.1. Reynolds number effects
Figure 7 shows the Rib − θ parameter space of the fastest growing modes at a lower
Re = 650 (figure 7a) and higher Re = 5000 (figure 7b) than the standard case discussed
in § 3.1. Generally, Re has a significant effect on all families of instabilities except KHI.
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Figure 6. Clustering results – fastest growing mode of each family in Rib − θ parameter space: (a) fastest
amplifying modes (FAM) of all families reproduced from figure 2(a); (b) HWI; (c) KHI; (d) LWI; (e) DVLWI;
and (f ) UVLWI modes.
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Figure 7. Effect of the Reynolds number: fastest growing mode projected onto Rib − θ space for (a)
Re = 650 and (b) Re = 5000.

The HWI-dominated regime expands to smaller (and slightly larger) Rib but shrinks
in θ with increasing Re. The largest θ for HWI decreases from 1.3 to 0.4, indicating
a stronger suppression effect by the slope. The long-wave families (LWI, DVLWI and
UVLWI) still dominate the large Rib region, and their boundaries approach θ = 0◦ as
Re increases. For instance, the left-most VLWI appears at θ ≈ 2◦ for Re = 650, whereas
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Figure 8. Effect of Prandtl number: fastest growing mode projected onto the Rib − θ space for (a) Pr = 1,
(b) Pr = 28 and (c) Pr = 70, respectively.

it is θ ≈ 0.3◦ for Re = 5000. Similarly, for UVLWI, the right-most points change from
θ = −0.6◦ at Re = 650 to θ = −0.1◦ at Re = 5000. It is anticipated that in the inviscid
limit Re → ∞ the critical θ will approach 0. Therefore, it is a reasonable speculation that
these gravity-induced long waves may be generic in high-Re natural water bodies subjected
to shear, stratification and even the shallowest slope.

3.6.2. Prandtl number effects
Figure 8 displays the Rib − θ parameter space of the fastest growing modes at Pr = 1,
28 and 70, respectively, corresponding to the increasingly sharper interface of the density
base state, following (2.10). To ensure convergence, the grid resolution for the LSA was
set to 150, 250 and 400, respectively. As Pr increases, the influence of the slope θ on
KHI becomes more significant, resulting in a wider upper boundary of KHI, which can
be triggered at Rib > 0.25 for large downward slopes θ � 5◦. Meanwhile, HWI is also
significantly affected by Pr. At Pr = 1, HWI does not appear due to the thick density
interface determined by (2.10). However, as Pr increases, the region of HWI expands
significantly towards larger θ . The long-wave families exist at all Pr. As Pr increases
from Pr = 1 to 28, the territory of the long waves converges towards θ = 0. However,
the changes in the territory become less significant from Pr = 28 to 70, indicating a
potential convergence of the wave regime at moderate Pr. However, due to the dominance
of HWI at high Pr, the long-wave families are largely omitted by the fastest growing HWI
at Rib � 10 in figure 8(c). Note that the impact of Pr may be attributed to two factors:
(a) the modification of interface thickness and (b) the change in Lρρ of (2.9). Although
not presented here, we observed that those short-wave instabilities are more sensitive to
changes in the interface thickness, while long-wave instabilities are influenced by both
factors. In practical flow systems, such as the SID studied by Lefauve & Linden (2020), Pr
and the interface thickness are often coupled, as a large Pr reduces the scalar diffusivity,
enabling the maintenance of a relatively sharp interface. Finally, at Pr = 28, the profile of
the Thorpe exchange flow (F = 0 in 2.12) passes sequentially through the HWI-, DVLWI-,
LWI- and KHI-dominated regimes. This provides an example where DVLWI and LWI can
dominate Thorpe’s SIC flow.
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4. Nonlinear evolution of unstable modes

To gain insight into the subsequent nonlinear evolution of these unstable modes we conduct
forced 2-D DNS. We describe our DNS in § 4.1 and discuss the evolution and breakdown
of the instabilities in § 4.2. The instantaneous flow kinetics and the mechanisms leading to
breakdown are discussed in §§ 4.3 and 4.4, respectively.

4.1. Forced DNS formulation
To simulate the growth of linear unstable perturbations on the desired base state, we add
to the right-hand sides of (2.2) and (2.3) the two forcing terms

Fv = − 1
Re

d2U
dz2 − Ri sin θR, Fρ = − 1

RePr
d2R
dz2 , (4.1a,b)

respectively, derived from the steady non-convective base flow equations. In this way, the
mean velocity and density of the DNS are forced towards the targeted base profile of
U(z) and R(z), while the effects on the evolution of perturbations are eliminated. These
terms can be regarded as enforcing a pressure-driven exchange flow under a sustained
stratification. Similar approaches that apply constant body forces to the stratified flows
were introduced in Howland, Taylor & Caulfield (2018) and Parker, Caulfield & Kerswell
(2021).

We perform the simulations using Dedalus (Burns et al. 2020), an open-source solver
widely used to solve various fluid problems (Lecoanet et al. 2016; Beneitez, Page &
Kerswell 2023; Zhu, Li & Marston 2023c). Dedalus employs a Fourier–Chebyshev
pseudospectral scheme for spatial discretisation and a third-order, four-stage diagonally
implicit–explicit Runge–Kutta scheme (Ascher, Ruuth & Spiteri 1997) for time stepping.
We imposed periodic boundary conditions in the streamwise x direction, while we applied
no-slip and no-flux boundary conditions for velocity and density, respectively, to the solid
walls at z = ±1, as in the LSA. The streamwise length Lx of the channel was set equal to
the wavelength of the fastest growing mode, while the channel height Lz was fixed at 2.
We employed a uniform grid for the x direction and a Chebyshev grid for the z direction.
The simulation resolution was determined by the geometrical and physical parameters
of the problem. We initialised the simulations by superimposing on the base state the
eigenfunctions of the LSA unstable modes with a perturbation magnitude ζ . Note that
the evolution of these DNS does not depend on the specific eigenfunction perturbations.
For instance, a sufficient small random initial perturbation can evolve into the dominant
unstable modes after a longer initial evolution. The parameters of the production runs are
listed in table 1.

4.2. Temporal evolution
In this section, we focus on the temporal evolution of the fastest growing modes of each
instability family, I, II, III, IV and V, as marked in figure 2. Figure 9 shows the temporal
behaviour of the unstable modes through the time series of the mass flux Qm(t) (3.2)
and the spatially averaged vertical velocity of perturbations 〈w2〉(t), where 〈·〉 denotes
averaging over x, z. The magnitude ζ of the perturbation was chosen differently for each
mode in order to obtain a reasonably long linear growth period. The forcing magnitude γ
is determined so that the base velocity matches the selected cases in figure 2. The exchange
flow is simulated by forcing the background flow in time using (4.1a,b) and allowing the
perturbations to grow.
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Figure 9. Time evolution of (a) mass flux Qm and (b) logarithm of vertical velocity squared ln〈w2〉 for the
fastest growing modes in table 1. The slopes of the growth for the HWI, KHI, LWI, DVLWI and UVLWI
modes are 0.0038, 0.15, 0.018, 0.0017 and 0.0089, respectively, consistent with 2ηr of corresponding unstable
mode in LSA (0.0037, 0.15, 0.018, 0.00018 and 0.0092).

In figure 9(a), Qm is initially constant, consistent with the targeted base state in
figure 2. This suggests that the body forces described in (4.1a,b) effectively control the
background state. However, the Qm profiles cease to remain flat when the perturbations
experience significant amplification, marking the onset of the nonlinear stage in the flow.
The evolution of the disturbance amplitudes is shown in figure 9(b), with all cases
exhibiting a clear exponential growth period for w2, with growth rates matching the
corresponding linear unstable modes. It suggests a minor impact of the forcing, introduced
by (4.1a,b), on the evolution of these unstable modes. For KHI, LWI and UVLWI,
following the exponential growth period, an intense nonlinear bursting process is caused
by the breakdown of the primary waves, leading to intense mixing and changes in Qm and
w2. In contrast, the sudden changes in Qm do not appear for HWI and DVLWI since their
primary waves do not break down. The HWI and DVLWI have a pair of conjugate modes,
represented by oscillating w2 profiles, due to the synchronisation of complex-conjugate
modes, as discussed in Yang et al. (2022). Interestingly, after the nonlinear bursting at
t = 1250, the nonlinear HWI still maintains the oscillating pattern (Lefauve et al. 2018).
The time series of Qm and ln〈w2〉 pinpoint the critical time when the nonlinear effects
become prominent. Specifically, this occurs when Qm deviates from its constant level
or when ln〈w2〉 no longer shows exponential growth after reaching a certain amplitude.
Note that the critical amplitude for nonlinear bursting remains independent of the initial
amplitude of perturbations. However, it varies for each individual unstable mode, as
illustrated in figure 9. The critical time may vary depending on the particular unstable
mode, the growth rate and the magnitude of the initial perturbation.

Figure 10 shows the x − t diagrams of ln〈w2〉z, where 〈·〉z indicates z-averages. In case
HWI (figure 10a), we observe left-going waves from the spatial–temporal diagram, while
its conjugate pair is omitted as only one mode of the pair is imposed as initial perturbation
in the DNS. Nonlinear effects become significant at t ≈ 1250 (ln 〈w2〉 ≈ −9) owing to
a relatively small growth rate (0.0038), as indicated by the saturation of the exponential
growth of w2 in figure 9(b). Interestingly, the spatial–temporal pattern of HWI does not
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Figure 10. Spatial–temporal diagrams of ln〈w2〉z from the nonlinear simulations of (a) HWI, (b) KHI, (c) LWI,
(d) DVLWI and (e) UVLWI. The black solid lines indicate the times of visibly nonlinear dynamics identified
in figure 9.

change significantly after t ≈ 1250 in figure 10(a). This implies that nonlinear effects only
halt the linear growth of Holmboe wave structures, which maintain their forms as nonlinear
Holmboe waves, as observed in experiments and nature (Tedford, Pieters & Lawrence
2009; Meyer & Linden 2014; Cudby & Lefauve 2021). By contrast, KHI generates strong
secondary instabilities (Mashayek & Peltier 2012) after the onset of nonlinear effects at
t ≈ 200 (ln 〈w2〉 ≈ −5). Consequently, the KH billows break up, leading to highly chaotic
flow stages with small-scale structures.

In figure 10(c–e), the x − t diagrams of ln〈w2〉z reveal that for the three new families
of long waves, small-scale structures emerge in the latter stages of the transitions,
characterised by highly fluctuating contour lines. In the case of LWI (figure 10c), the onset
of an intense chaotic flow period occurs at t = 710, during which small-scale structures
are initially generated at x = 25 and x = 55 where ln〈w2〉z of the linear wave peaks. These
structures then propagate towards the quiet regions and ultimately trigger a disorganised
flow field across the channel. Interestingly, we have observed from figure 9(a) that the
nonlinear effects set in at t = 630 (ln 〈w2〉 ≈ −14) as Qm significantly deviates from the
original constant level. At this stage, the two peaks of the linear disturbance approach each
other while contour curves twist. The ln〈w2〉z distribution no longer maintains its shape
as is in the linear growing period. As we will show later, this nonlinear dynamics is the
breakdown of the long waves.

In case DVLWI, as shown in figure 10(d), the unstable wave moves leftward and
grows exponentially until nonlinear dynamics set in at t = 2860 (ln 〈w2〉 ≈ −19), which is
identified by a jump in 〈w2〉(t) in figure 9(b). Small-scale waves/structures are formed at
a local peak of the long wave w2, which propagate both leftward and rightward, creating
strong mixing. Despite the intense bursting of the flows, the long wave does not break
down like LWI, presumably due to its low growth rate. It continues to propagate at the
same phase speed as the linear wave energy that was previously used to amplify the long
wave and is then fed to the small-scale waves, which eventually break down and dissipate,
allowing the long wave to persist for a long period of time and propagate over a long
distance.

In case UVLWI (shown in figure 10e), local nonlinear bursting and small-scale
structures are directly created at t = 500 (ln 〈w2〉 ≈ −16) and x ≈ 150 and 350 on top
of the long wave. Similar to DVLWI, a preliminary breakdown of the long-wave is not
observed. Soon after, intense secondary instabilities fill the entire channel and the long
waves are no longer distinguishable.
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Figure 11. Evolution of the turbulent kinetic energy (TKE) spectrum Ek in wavenumber–time space for
nonlinear DNS in three long wave cases: (a) LWI; (b) DVLWI; (c) UVLWI. The black dash lines mark the
times of visibly nonlinear dynamics identified in figure 9.

The evolution of long waves and the consequent generation of short waves are illustrated
in figure 11, depicting the evolution of the spectrum of TKE:

Ek(k, t) = 1
4

∫ 1

−1
(ũ′�ũ′ + w̃′�w̃′) dz, (4.2)

where superscript � denotes the complex conjugate and tildes indicate a Fourier transform
of the perturbation velocity fields u′,w′ with respect to x. In all cases, prominent red
contours initially emerge at the smallest wavenumber k, highlighting the prevalence of long
waves with peaks at k ≈ 10−1, 10−2 and 10−2 for LWI, DVLWI and UVLWI, respectively.
The energy spectrum then gradually extends towards larger wavenumbers k before the
onset of the nonlinear bursting process (dashed line), during which small-scale structure
rapidly expands at large k. The LWI spectrum expansion is smoother than the others,
corresponding to its two-stage transition. Meanwhile, small-scale structures appear at
(k, t) = (2, 500) in UVLWI before the entire spectrum is filled, representing a sequence
of regular KH-like billows.

Essentially, the nonlinear growth of long waves alters the base state and allows the
growth of short-wave instabilities. We will explore this mechanism in more detail in
§§ 4.3–4.4.

4.3. Features of flow kinematics
In this section we present instantaneous flow fields corresponding to the key stages of
evolution of the long wave instabilities. The kinematics of the short waves, i.e. HWI and
KHI, have been well-documented in the literature (Smyth & Winters 2003; Mashayek &
Peltier 2012, 2013; Salehipour et al. 2015; Lefauve et al. 2018), and will not be repeated
here.

Figure 12 shows snapshots of the total density ρ = R + ρ′ (colours) and vertical velocity
w′ (lines) at four stages of LWI. We find two stages of nonlinear breakdown corresponding
to the breakdown of the long wave and the generation of KH-like overturns. At the
linear stage (figure 12a), the impacts of the density perturbation on the mean are barely
observable and the interface is thin and flat. Later, the growth of LWI raises and drops
on the left- and right-hand sides of x = 40, creating a large-scale jump (figure 12b).
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Figure 12. Nonlinear LWI – density (colour) and vertical velocity (lines) snapshots of the forced DNS at
different time instances: (a) t = 400; (b) t = 600; (c) t = 700; (d) t = 760.

Interestingly, a hydraulic jump is also observed in the experiments and DNS of SID (Zhu
et al. 2023a,b) and may be related to LWI given the analogous length scale between the
SID facility (∼60) and the unstable waves. Meanwhile, w′ becomes localised at x = 40.
Further amplification of the unstable mode breaks down the jump, generating a chaotic
region at t = 700. At this stage, the instability is no longer linear, as demonstrated in § 4.2.
At t = 760, a series of short overturns resembling KH billows are formed inside and at two
sides of the chaotic region at x = 40. These waves propagate away from the chaotic region
and may eventually lead to (2-D) turbulence.

Figure 13 shows snapshots of the flow fields at three stages of DVLWI. From t = 1500
(figure 13a) to t = 2500 (figure 13b), DVLWI amplifies, while light-blue (e.g. upper
layer, 150 < x < 200) and light-red (e.g. bottom layer, 250 < x < 300) regions become
distinguishable, indicating the enhancement of mixing in these regions which acts to
dissipate the energy injected by gravity. As the base flow is frozen by the simulation,
the mixing is attributed to the amplification of DVLWI. At t = 2900 (figure 13c), further
growth of the long wave induces intense KH-like overturns near the leading edge of
DVLWI, characterised by the strong fluctuation of w′ in the range of x = 175 ∼ 250. These
overturns create extra dissipation and mixing of the flow, acting to balance the extra kinetic
energy supplied by gravity. In contrast to the KH-like overturns in LWI, the overturns can
centre within the bulk flow of each layer in addition to the interface (figure 13d). This is
because the propagation of the leading edge of the long waves (dark blue region at x = 180)
into the mixed region (light blue region at x < 180) creates a weak interface between the
denser and lighter regions inside the flow layer.

Finally, in the UVLWI case (figure 14), the amplification of the stationary waves directly
induces localised KH-like billows characterised by strong fluctuations of w′ in figure 13(c)
at the interface without first breaking down as in LWI. This behaviour may be due to the
faster growth rate, which prevents the formation of a distinct nonlinear ‘jump’ observed in
LWI.
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Figure 13. Nonlinear DVLWI – density (colour) and vertical velocity (lines) snapshots of the forced DNS:
(a) t = 1500; (b) t = 2500; (c) t = 2900. An enlarged plot of panel (c) is shown in panel (d).
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Figure 14. Nonlinear UVLWI – density (colour) and vertical velocity (lines) snapshots of the forced DNS:
(a) t = 600; (b) t = 888. An enlarged plot of panel (b) is shown in panel (c).

As discussed in § 4.2, the evolution of these long wave families eventually lead to intense
bursting processes that form strong small-scale KH-like overturns. These overturns are
responsible for dissipating the kinetic energy injected by a positive slope or a background
forcing that cannot be completely balanced by the dissipation of long waves. Note that in
all the long waves cases, a short-wave instability (KHI and HWI) does not initially exist
according to the LSA in § 3.1. In the next section, we study how these short-wave KH-like
overturns are induced by nonlinear long waves.
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Figure 15. Spatial–temporal diagrams of the gradient Richardson number Rig at the density interface in forced
DNS for (a) LWI, (b) DVLWI and (c) UVLWI. The colour maps show the values of Rig, while the lines
represent ln〈w2〉z.

4.4. Breakdown mechanism
In § 3.1, we showed that the KHI can only occur when Rib � 0.25. In the new long wave
cases considered in this study, Rib � 1, hence KHI cannot be triggered. Instead, KH-like
overturns are formed by the nonlinear evolution of these long waves.

To understand the cause of the formation of KH-like overturns, we computed the
gradient Richardson number Rig at the total density interface ρ = 0, which is defined
as

Rig(x, t) ≡ Ri
∂ρ/∂z
(∂u/∂z)2

∣∣∣∣
ρ=0

, (4.3)

where we recall that Ri ≡ 1/4 (see § 2.1). Note that the field Rig(x, t) is based on the total
velocity u and density ρ, and thus differs from the constant Rib defined in (3.1), which is
based on the initial base flow profiles U and R.

In figure 15, we show the x − t diagrams of Rig, with w2 contour lines superimposed.
In general, as the unstable long waves grow, the density gradient can decrease due to
diffusivity which increases the mixing layer. Meanwhile, the velocity gradient can increase
as the perturbations are amplified. This results in a decreasing interfacial Rig, until it
reaches below 0.25 (shades of blue), with which small-scale structures are associated.

For each individual long-wave family, the process is slightly different. The LWI
(figure 15a) has two stages of nonlinear breakdown. The first stage appears at t = 680
when a ‘jump’ is formed at x = 45. This jump changes the density interface and generates
two low Rig regions separated by a high Rig region. In these low Rig regions, Rig
continuously decreases due to the amplification of long waves and eventually reduces
below 0.25, which potentially allows the growth of the secondary KHI in these regions.
Finally, overturns are formed in these regions, leading to the second stage of nonlinear
breakdown. Similarly, the amplification of DVLWI (figure 15b) also causes a low Rig
region that travels along with the waves. As soon as Rig < 0.25, intense overturns are
formed in this region and later contaminate the entire duct. For UVLWI, the overturns
are first formed at the edges of the low Rig region (170 < x < 330). The close relation
between the low Rig region and the onset of nonlinear short waves strongly suggests that
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Figure 16. Pathways of TKE in sloping exchange flows under (a) strong stratification Rib � 0.25, where only
very long waves are unstable; (b) weaker stratification Rib < 0.25 where both short and long waves coexist.

the overturns are a consequence of the decreasing of local Rig caused by the nonlinear
evolution of initially long waves.

From an energy budget perspective, the formation of short-wave overturns in these
long-wave simulations allows for more efficient dissipation of kinetic energy fed by
external forces. In figure 16(a), we illustrate the pathways of TKE K′ as given
schematically by

∂tK′ = ΦK′ + P − B − ε, (4.4)

where, P, ε, B and ΦK′
represent the production, dissipation, buoyancy flux, and

transport terms of K′. The reader may refer to Caulfield (2021) and Lefauve & Linden
(2022) for the definition and a more comprehensive discussion of the kinetic budget
of stratified shear flows. Under strong stratification Rib � 0.25; initially only the long
waves are allowed to grow, gaining energy from the mean flow through P and B,
and losing it through ε. As the long waves are amplified, local shear is created and
amplified by the growing velocity perturbations, leading to a local decrease of Rig. As
Rig � 0.25, the necessary condition for the growth of short waves (mostly KHI here)
becomes satisfied. The short waves then grow, extracting K′ from the long waves and
dissipating it to internal energy. This opens a new energy pathway that allows flows with
strong stratification (large Rib) to dissipate energy by creating small-scale (turbulent)
structures. When Rib � 0.25 (figure 16b), long waves can coexist with short waves
(e.g. case IV in figure 3) and may contribute to the energy dissipation. But they are often
significantly weaker than short waves, which tend to have a faster growth rate. Meanwhile,
the short wave directly gains most of the kinetic energy from the mean flow and converts
it to internal energy. We also note that turbulence created by these unstable waves can
also induce irreversible mixing which, in return, contributes to the production of internal
energy.

5. Conclusions

In this paper, we examined the effects of longitudinal gravitational forces on the stability
of two-layer stratified exchange flows by conducting linear stability analyses and nonlinear
forced DNS in a sloping channel with solid top and bottom boundaries. In addition to the
well-known HWI and KWI, we revealed the existence of three new families of long-wave
instabilities subject to non-zero gravitational forces (θ /= 0):
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(i) LWI, with wavelengths of the order 10 − 100 channel depths and a near-zero wave
speed (see figure 12);

(ii) DVLWI, with wavelengths of the order 100 − 1000 channel depths, a non-zero wave
speed, and complex conjugate eigenmodes implying travelling waves (see figure 13);

(iii) UVLWI, with wavelengths � 100 channel depths and a near-zero wave speed (see
figure 14).

These long-wave families are generically different from the HWI and KHI instabilities.
They are primarily initiated by interactions between the streamwise gravity forcing and
gravity waves, with shear playing a secondary role. Therefore, their onset is largely
independent of the base flow speed, meaning that they can be triggered even at very high
background gradient Richardson numbers Rib � 1, and induce chaos, (2-D) turbulence
and mixing even in strongly stratified fluids. In a weakly stratified flow (low Rib), they can
also coexist with short-wave instabilities (KHI and HWI), but they generally have a lower
growth rate. Meanwhile, increasing the slope θ tends to suppress the HWI regime while
enhancing the KHI. The neutral boundary of KHI increases linearly from Rib = 0.15 at
θ = −10◦ to 0.25 at θ = 10◦.

To explore the dependence of the long-wave families on flow parameters, we varied the
Reynolds number Re, Prandtl number Pr, the base flow and boundary conditions. While
increasing the Re does not significantly affect KHI, it does enhance the other instabilities.
The range of HWI expands to larger Rib, while the range of the long-wave instabilities
approaches θ = 0. Therefore, it can be anticipated that as Re → ∞ (as is often the case
in natural flows), the critical slope required to trigger these long instabilities approaches
zero. By increasing Pr, the range of the long-wave instabilities slowly approaches θ = 0,
indicating that these long waves can exist in both water ( Pr ≈ 7 ∼ 700) and air (Pr ≈ 1).
It should be noted that these instabilities are not limited to the sine-like base state and
the no-slip boundary conditions used in this study. Instead, they can be triggered by, for
example, a tanh-shaped velocity base and free-slip velocity boundary conditions.

Finally, we studied the nonlinear evolution of the different instabilities and their
connections to turbulence using a 2-D forced DNS. For all of the long-wave instabilities,
the evolution eventually led to a nonlinear bursting process with significant small-scale
secondary KH-like overturns and mixing. Specifically, the LWI exhibits two nonlinear
stages where an initial breakdown of the long waves is followed by a secondary bursting
process, creating intense KH-like overturns. For DVLWI and UVLWI, the long waves do
not break down. Instead, they directly alter the base states and induce localised small-scale
overturns.

The evolution of these long instabilities results in a decrease in the density gradient and
an increase in the shear, which in turn reduces the local gradient Richardson number Rig.
Our analysis reveals that the appearance of KH-like overturns is highly correlated with a
local low Rig, which approaches the critical threshold of 0.25 (below which we find the
KHI), substantiating the emergence of localised KH-like overturns. From a TKE budget
perspective, a new energy pathway allows the transfer of kinetic energy from the mean flow
to the long waves (linearly) and then to the short waves (nonlinearly), eventually leading
to the dissipation of TKE, under conditions where short waves would be initially linearly
stable.

The circumstances under which turbulence can persist in strongly stratified flows
remains a fascinating debate within the community (Caulfield 2021). We demonstrated that
weakly unstable (very) long waves may trigger turbulence and mixing after long periods of
time, even under initially very strongly stratified conditions (Rib � 1). Reproducing these
phenomena in experiments might pose a challenge due to their exceptionally long length
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Figure 17. Impact of a tanh-shaped density and velocity profiles; projection of the fastest growing mode onto
parameter spaces: (a) Ric − θ and (b) Qm − θ . Solid and dashed lines are the growth rate and frequency,
respectively (compare with figure 2a,c).

and temporal scales, except for LWI, which might exhibit a comparable length with the
existing SID experiments. However, they have particular relevance for high-Re flows in
rivers (Yoshida et al. 1998) and straits (Gregg & Özsoy 2002) or any natural flow having
even very shallow slopes θ ≈ 0. A quantitative investigation of the turbulent transition
and mixing associated with these long waves would require 3-D stability and DNS, an
endeavour left for future work.
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Appendix A. Linear stability analysis with free-slip boundary condition

To investigate the potential impacts of the base flow shape on the instabilities, we perform
a LSA with a tanh-shaped density (2.10) and velocity base

U(z) = γ tanh(ιz), (A1)

where ι = 1.5κ
√

Pr defines the thickness of velocity base. A free-slip boundary condition
for velocities is also adopted to understand the effects of boundary conditions.

In figure 17, we show the Rib − θ and Qm − θ parameter space of the fastest growing
modes of the above LSA. Clearly, the five families of instabilities appear even with the
different base flow and boundary conditions. This means that these instabilities are not
a consequence of an arbitrary flow condition that is subject to a certain base flow or
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Figure 18. Impact of a tanh-shaped density and velocity profiles: vorticity (a,c,e,g,i) and density (b,d, f,h,j)
eigenfunctions of the fastest growing modes of (a,b) I, HWI, (c,d) II, KHI, (e, f ) III, LWI, (g,h) IV, DVLWI and
(i,j) V, UVLWI (compare with figure 5).

boundary condition, but rather general flow instabilities that can appear in a wide range
of stratified flow systems. Features of these instabilities, e.g. the wave speed, wavelength,
growth rate and regime, are largely consistent with the main cases discussed in § 3.1 (see
figure 2a,c), which suggests, again, the universal features of these instabilities.

Figure 18 shows the eigenfunctions of fastest growth modes of the typical case of each
instability (marked in figure 17). Note again that the forms of eigenfunctions of each
instability are generally consistent with the main cases in § 3.4 in the middle region of
the channel (see figure 5). However, those intense regions near the wall do not appear with
a free-slip velocity boundary condition. Therefore, these near-wall structures as well as the
no-slip boundary conditions are not essential to these instabilities.
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