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ABSTRACT

The velocity perturbations and Reynolds stresses associated with finite-amplitude Holmboe instabilities are investigated using linear stability
analysis, numerical simulations, and laboratory experiments. The rightward and leftward propagating Holmboe instabilities are separated,
allowing for a direct comparison of the perturbation fields between the numerical simulations and the linear stability analysis. The decompo-
sition and superposition of the perturbation fields provide insights into the structure and origin of Reynolds stresses in Holmboe instabilities.
Shear instabilities in stratified flows introduce a directional preference (anisotropy) in velocity perturbation fields, thereby generating
Reynolds stresses. Here, we investigate this anisotropy by comparing pairs of horizontal and vertical velocity perturbations (u0;w0), obtained
from the simulations and the laboratory experiment, with predictions from linear stability analysis. For an individual Holmboe mode,
both the simulations and linear theory yield elliptical (u0;w0)-pairs that are oriented toward the second and fourth quadrants (u0w0 < 0), cor-
responding to the tilted elliptical trajectories of particle movement. Combining the leftward and rightward Holmboe modes yields (u0;w0)
ellipses whose orientation and aspect ratio are phase-dependent. When averaged over a full cycle, the joint probability density functions of
(u0;w0) in the linear theory and single wavelength simulations exhibit “steering wheel” structures. This steering wheel is smeared out in mul-
tiple wavelength simulations and the laboratory experiment due to varying wavelengths, resulting in an elliptical cloud. All of the approaches
adopted in the present study yield Reynolds stresses that are comparable to those reported in previous laboratory and field investigations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097624

I. INTRODUCTION
The onset of instabilities triggering non-linear motions is a fun-

damental problem in fluid mechanics. In density-stratified shear flows,
the Kelvin–Helmholtz instability and the lesser-known Holmboe
instability can occur. The Kelvin–Helmholtz instability occurs when
the thickness of the density interface is similar to that of the velocity
interface and is characterized by periodic arrays of billows.1,2

The Holmboe instability occurs when the density interface is much
thinner than the velocity interface and is characterized by two
counter-propagating waves that develop on either side of the density
interface.3–6 The Holmboe instability occurs in the ocean surface
mixed layer7 and near deep-ocean topography,8 in atmospheric jets
and fronts,9 in estuarine salt wedges,10–12 in river outflows,13 and in
pyroclastic currents.14 While the Kelvin–Helmholtz instability has tra-
ditionally been studied more extensively,15 in recent years, increasing
attention has been paid to the Holmboe instability. An improved
understanding of the Holmboe instability has a wide range of

applicability from the prediction of salt water intrusion into estuaries16

to the sub-grid scale parameterization of mass, momentum, and
energy transfers in general circulation models.17,18

Our understanding of the Holmboe instability has been advanced
by comparing the results of two-dimensional linear stability analysis
with numerical simulations, laboratory experiments, and field studies.
There has been good agreement between the predicted linear
growth rates of Holmboe instabilities and the results of numerical
simulations.15,19 There has also been good agreement between the pre-
dictions of linear stability analysis and observations of phase speeds
and wavelengths of finite-amplitude Holmboe instabilities in labora-
tory experiments.20–25 In addition, the vertical location and wave-
length of finite-amplitude Holmboe instabilities observed in the
Fraser River salt wedge coincide with the predictions of linear stability
analysis.10,26,27 The relevance of linear stability analysis to finite-
amplitude Holmboe instabilities is thought to be a consequence of the
general observation that infinitesimal perturbations pass through a
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sequence of bifurcations to reach finite-amplitude coherent states and,
in the process, retain some of their key properties.28 The above obser-
vations have motivated us to investigate the extent to which linear sta-
bility analysis can provide insight into the properties of the velocity
perturbations and Reynolds stresses associated with finite-amplitude
Holmboe instabilities.

In stratified shear flows in general, stratification and horizontal shear
inevitably introduce a directional preference (anisotropy) in the velocity
perturbation fields, thereby generating Reynolds stresses.29–33 Scatter plots
of the horizontal and vertical velocity perturbation pairs (u0;w0) have
been used to show the degree of anisotropy and estimate the Reynolds
stresses, which describe momentum and kinetic energy transfer.34–36

These scatter plots yield anisotropic clouds of points often fitted with vari-
ance ellipses.35,37 These variance ellipses are characterized by the orienta-
tion angle and anisotropy and determine the Reynolds stresses. Although
the link between variance ellipses and fluid motions is unclear, the vari-
ance ellipse has been extensively used to investigate barotropic and baro-
clinic instabilities due to its geometric simplicity.37–41

In the present paper, we compare the variance ellipses and
Reynolds stresses of Holmboe instabilities obtained using linear stability
analysis with those obtained from numerical simulations and laboratory
experimentation. To do so, we focus on the flow field of two-
dimensional coherent structures associated with the Holmboe instability
at moderate Reynolds numbers (102–103). We will address (i) how the
variance ellipses and the resulting Reynolds stresses vary vertically, (ii)
how these relate to the fluid motion, and (iii) how they vary in progres-
sively more realistic systems, i.e., from idealized linear stability analysis
to single wavelength simulations, multiple wavelength simulations, and
laboratory experiments. Unlike the commonly used single wavelength
simulations with a constant wavelength, the multiple wavelength simula-
tions allow for the spatial and temporal variation of wavelengths as is
observed in laboratory experiments20,22–25 and field observations.10–12,42

Section II describes the background for our linear stability
analysis and numerical simulations. In Sec. III, we present the hor-
izontal and vertical velocity perturbation pairs associated with
each of the counter-propagating wave modes predicted by linear
stability analysis and the resultant Reynolds stresses. We then
present the phase-dependent interaction between the counter-
propagating waves. Section IV presents the Reynolds stresses
computed using numerical simulations. By comparing single and
multiple wavelength simulations, we examine wavenumber shift-
ing and its effects on the instabilities from linear growth to satura-
tion. In Sec. V, we compare the velocity perturbation pairs and
Reynolds stresses predicted by linear stability theory with numeri-
cal simulations and a laboratory experiment. Our summary and
conclusions are presented in Sec. VI.

II. BACKGROUND
A. Setup and equations

A density-stratified shear layer consists of initial velocity and
density profiles whose variation in the vertical direction can be repre-
sented by hyperbolic tangent functions. The velocity distribution has a
total jump DU over a length scale h. Similarly, the stable density distri-
bution has a total jumpDq over a length scale d,

!U ðzÞ ¼ DU
2

tanh
2
h
z

! "
; (1)

!qðzÞ ¼ $Dq
2

tanh
2
d
z

! "
: (2)

A schematic illustrating these profiles is shown in Fig. 1(a).
The shear layer (vorticity) thickness is h % DU=ðd !U=dzÞmax , and
the density layer thickness is d% Dq=ðd!q=dzÞmax . These idealized
hyperbolic tangent profiles have been used extensively in the liter-
ature,43–47 since they closely approximate the background profiles
in many stratified flows in nature. Based on these scales, we define
four dimensionless parameters: the Reynolds number (Re), the
bulk Richardson number (J), the Schmidt number (Sc), and the
thickness ratio (R) as

Re % DUh
!

; (3)

J % Dqgh

q0ðDUÞ2
; (4)

Sc % !

D
; (5)

R % h
d
; (6)

where ! is the kinematic viscosity and D is the diffusivity.
The dimensionless Navier–Stokes equations under the Boussinesq

approximation are

r & u ¼ 0; (7)
@u
@t

þ u &ru ¼ $rp$ Jqk þ Re$1r2u; (8)

@q
@t

þ u &rq ¼ ðReScÞ$1r2q; (9)

where u is the velocity vector, p is the pressure, q is the density, and k
is the unit vertical vector.

B. Linear stability analysis
We solve the linearized Navier–Stokes equations (7)–(9) based

on the assumptions of a parallel background mean flow and two-
dimensional perturbations with normal mode forms (e.g., Refs. 19 and
48–50). The full velocity, pressure, and density fields are expressed in
terms of the background field and a small superimposed perturbation
(i.e., ju0=!U j ( 1),

u ¼ !U ðzÞiþ u0ðx; z; tÞ;
p ¼ !PðzÞ þ p0ðx; z; tÞ;
q ¼ !qðzÞ þ q0ðx; z; tÞ;

(10)

with all perturbations having the normal mode form

w0ðx; z; tÞ % rfŵðzÞ expðikx þ rtÞg; (11)

wherer is taking the real part; ŵ;r 2 C and k 2 R is the wavenum-
ber; and i is the unit horizontal vector. Note that in numerical simula-
tions, !U varies slowly in time due to diffusion of the background
profiles.51 Substituting into the governing Eqs. (7)–(9) yields

r r2

1

# $
ŵ

q̂

# $
¼ Lw Lwq

Lqw Lq

# $
ŵ

q̂

# $
; (12)
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where

Lw ¼ $ik!Ur2 þ ik
@2 !U
@z2

þ Re$1r4;

Lq ¼ $ik!U þ ðReScÞ$1r2;

Lwq ¼ J
@2

@z2
$r2

! "
;

Lqw ¼ $ @!q
@z

;

(13)

and r2 ¼ $k2 þ @2=@z2; r4 ¼ k4 þ @4=@z4 $ 2k2 þ @2=@z2. The
streamwise velocity eigenfunction is then reduced to û ¼ ði=kÞ@ŵ=
@z. The eigenvalue can be decomposed as r ¼ rr þ iri, where
rr 2 R represents the growth rate of the instability and ri 2 R is
related to the phase speed cp ¼ $ri=k. At the upper and lower bound-
aries, a no-flux boundary condition is imposed. Free-slip boundary
conditions are imposed for comparison with the numerical simula-
tions, and no-slip boundary conditions are imposed for comparison
with the laboratory experiment.

III. LINEAR STABILITY PREDICTIONS
In this section, we use linear stability theory to examine the parti-

cle orbits and Reynolds stresses associated with counter-propagating
Holmboe waves. We highlight that the total Reynolds stress is equal to

the sum of phase-independent contributions by the rightward and left-
ward propagating waves, and a phase-dependent interaction between
them.

A. Particle orbits of Holmboe waves
Following the normal mode assumption, the velocity perturba-

tions for a given mode are expressed as

u0ðx; z; tÞ % 1
2

ûðzÞeiðkx$xtÞ þ c:c:
h i

; (14a)

w0ðx; z; tÞ % 1
2

ŵðzÞeiðkx$xtÞ þ c:c:
h i

; (14b)

where x (¼ ir) is the frequency and c:c: denotes the complex
conjugate.

The corresponding linearized movement of fluid particles is then
given by36

dxpðtÞ
dt

¼ u0ðx0; z0; tÞ; (15a)

dzpðtÞ
dt

¼ w0ðx0; z0; tÞ; (15b)

where xðtÞ ¼ xpðtÞiþ zpðtÞk and (x0, z0) is the initial location.

FIG. 1. (a) Schematic illustrating the velocity and density profiles. The thick lines are smooth hyperbolic tangent profiles, and the thin lines are the corresponding piecewise lin-
ear profiles. The density and velocity profiles are centered at z¼ 0. (b)–(d) Fluid particle orbits generated by Holmboe waves in linear stability analysis based on the back-
ground profiles in (a). The Holmboe wave is unstable for 0:01 < k< 1:04 (most unstable for k¼ 0.5). At k¼ 1.04, either circular or elliptical particle orbits are generated for
(b) leftward and (c) rightward propagating marginally stable waves. (d) The spiral particle orbits for the rightward propagating unstable wave at k¼ 0.5. The dots denote the ini-
tial locations. The centroid of particle orbits at all levels is set at x¼ 0 for comparative purposes. L and R represent the leftward and rightward propagating waves, respectively.
Note that the particle orbits for the leftward propagating waves (b) mirror those of the rightward propagating waves (c).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 074110 (2022); doi: 10.1063/5.0097624 34, 074110-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Figures 1(b) and 1(c) show the orbits of fluid particles (pathlines)
for the stable and unstable Holmboe waves. These orbits are obtained
from the time integration of Eq. (15) at different initial vertical levels,
z0. The background profile for the linear stability analysis is the same
as that used in the numerical simulations (see Table I). As in the classi-
cal stability diagram (e.g., in Ref. 43, see Fig. 13), a positive growth rate
for the unstable Holmboe wave exists for 0:01 < k < 1:04, with
k¼ 0.5 being the most unstable wavenumber and k ¼ 0:01 and
k¼ 1.04 are the wavenumbers of marginal instability.

The marginally stable waves exhibit closed particle orbits, whereas
the unstable waves exhibit open particle orbits due to the positive
growth rate. The particle orbits of both stable and unstable waves are
often tilted toward the second and fourth quadrants (Fig. 1), as are the
corresponding (u0;w0)-pairs. The degree of tilt depends upon the verti-
cal location. For leftward propagating waves, the tilt is prominent within
the shear layer below the density interface, z$u . z. 0 [Fig. 1(b)],
whereas for rightward propagating waves, the tilt is prominent within
the shear layer above the density interface, 0. z. zþu [Figs. 1(c) and
1(d)]. This tilting generates Reynolds stresses u0w0 and will be investi-
gated using both linear stability analysis and numerical simulations.

B. Interaction of counter-propagating Holmboe waves
To determine Reynolds stresses, using linear stability theory, we

examine the interaction of the leftward and rightward propagating
Holmboe modes,

u0 ¼ u0ðLÞ þ u0ðRÞ; w0 ¼ w0ðLÞ þ w0ðRÞ; (16)

where the superscripts (L) and (R) are the components corresponding
to the leftward and rightward propagating modes, respectively.

The total velocity perturbations can be rewritten as

u0 ¼ 1
2

ûðLÞðzÞeiðkLx$xLtÞ þ c:c:
h i

þ 1
2

ûðRÞðzÞeiðkRx$xRtÞ þ c:c:
h i

;

(17)

and w0 has the same form; kL (kR) and xL (xR) are the wave number
and frequency for the leftward (rightward) propagating waves.

To focus on the interaction between the two waves independent
of their growth, we set growth rates to zero (xL;xR 2 R). This is con-
sistent with statistical stationarity as commonly assumed in studies of
stratified shear flow (e.g., Refs. 29 and 52–54).

Then, we have kL ¼ kR ¼ k and xL ¼ $xR ¼ x for the sym-
metric Holmboe waves. The total horizontally averaged Reynolds
stress over one wavelength is then expressed as

hu0w0ix ¼
1
4

ûðLÞŵ)ðLÞ þ û)ðLÞŵðLÞ þ ûðRÞŵ)ðRÞ þ û)ðRÞŵðRÞ
% &

þ 1
4
r

(

ðû)ðLÞŵðRÞ þ ûðRÞŵ)ðLÞÞe2ixt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Phase Dependent 1

þ ðûðLÞŵ)ðRÞ þ û)ðRÞŵðLÞÞe$2ixt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PhaseDependent 2

)

: (18)

One may write û ¼ ûr þ iûi and ŵ ¼ ŵr þ iŵi (ûr ; ûi; ŵr; ŵi

2 R), then the “Phase Dependent 1” and “Phase Dependent 2” terms
are a pair of complex conjugates, and thus, we have

hu0w0ix|fflfflffl{zfflfflffl}
Total

¼ 1
4
ûðLÞŵ)ðLÞ þ û)ðLÞŵðLÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Left; hu0w0ix;L

þ 1
4
ûðRÞŵ)ðRÞ þ û)ðRÞŵðRÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Right; hu0w0ix;R

þ 1
2
r ðû)ðLÞŵðRÞ þ ûðRÞŵ)ðLÞÞei/
n o

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Phase Dependent

; (19)

where û) (ŵ)) is the complex conjugate of û (ŵ) and h&ii represents
an average in the direction i; the time dependent variable is / ¼ 2xt.

Here, the first line on the right-hand side of Eq. (19) is identical
to the horizontally averaged Reynolds stress for the leftward propagat-
ing and rightward propagating modes, while the second line is an
additional phase-dependent term generated from the superposition of
the leftward and rightward propagating waves.

For an individual mode, the Reynolds stress does not have a
phase-dependent term. Averaging in the x and/or t over a wave cycle
for the leftward propagating wave yields

hu0w0ix;L ¼ hu0w0it;L ¼ hu0w0ixt;L ¼
1
4
ðûðLÞŵ)ðLÞ þ û)ðLÞŵðLÞÞ; (20)

and the averaged Reynolds stress for the rightward propagating wave has the
same form. All products depend on z only, and are independent of x and t.

Further taking an average of Eq. (19) over one wave period gives us

hu0w0ixt ¼ hu0w0ixt;L þ hu0w0ixt;R: (21)

Figures 2(a)–2(d) show the evolution of different terms in Eq.
(19) of the Reynolds stress throughout a cycle given by linear stability
analysis. In panel (a), although the perturbations spend an equal
amount of time in the growth and decay portions of the cycle, the
amplitude of hu0w0ix is largest when it is negative. Thus, a net negative

TABLE I. The parameters for the numerical simulations. The number of grid points in each direction is Nx, Ny, and Nz. The initial Re0 ¼ 120; J0 ¼ 0:13, Sc¼ 256, and
R0 ¼ 9 were used. kinitial is the initial wavenumber of the maximum growth and k0 ¼ 2p=kinitial . As the background flow evolves over time, the nondimensional numbers (Re J,
and R) and the wavenumber of the maximum growth (kmax) vary accordingly. SWS (MWS) denotes a single wavelength simulation (multiple wavelength simulation).

Initial parameters Quasi-steady period

Run Re0 Nx *Ny *Nz kinitial Lx=k0 t Re Observed ka Figure

SWS (2D) 120 128*1*512 0.5 1 120–200 440–560 0.5 2–4,6–8
SWS (3D) 120 128*128*512 0.5 1 120–200 440–560 0.5 8
MWS (2D) 120 2048*1*512 0.5 16 250–330 600–740 0.31 5,6,8

aThis wavenumber is calculated based on the observed number of waves in the domain.
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total Reynolds stress hu0w0ixt is produced. As demonstrated theoreti-
cally, this Reynolds stress hu0w0ixt is a sum of time-independent
hu0w0ix;L and hu0w0ix;R as shown in panels (b) and (c), respectively.
The Reynolds stresses for the rightward and leftward propagating
waves are concentrated above and below the density interface, respec-
tively, and they are independent of time.

The additional phase-dependent term is shown in Fig. 2(d). Its
cycle illustrates that the magnitude is equally distributed between a

decay period (0 +/ < p) and a growth period (p +/ < 2p). Over
one period, its net contribution to the Reynolds stress is zero. It should
be noted that the maximum value of the phase-dependent term is
larger than the magnitude of the time averaged hu0w0ixt , which results
in hu0w0ix being positive at some instants (e.g., / ¼ p). These oscillat-
ing patterns are also observed in numerical simulations. We will com-
pare the linear stability analysis with the numerical simulation results
in Sec. IVA2.

FIG. 2. Reynolds stress (hu0w 0ix ) terms in Eq. (19) within one wave period from linear stability analysis (the left column) and hu0w 0ix terms in the non-linear single wavelength
simulation (the right column). (a) and (e) The total field, (b) and (f) the leftward propagating wave field, (c) and (g) the rightward propagating wave field, and (d) and (h) the
“Phase Dependent” term. The background profile for the linear stability analysis is the same as the initial profile in the single wavelength simulation in Table I. In the simulation,
the period under the black solid line was compared with linear stability analysis in Fig. 4.
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IV. NUMERICAL SIMULATIONS
We perform numerical simulations using SPINS, a parallelized

pseudospectral solver (see Subich et al.55) to solve the Navier–Stokes
equations (7)–(9). The computational domain height is Lz¼ 20, which
prevents the boundaries from interfering with the shear layer during
the linear development.49 The horizontal length of the domain is
Lx ¼ k0 (the wavelength of the maximum growth rate) in single wave-
length simulations and is Lx ¼ 16k0 in the multiple wavelength simu-
lation. The width in the spanwise direction is Ly ¼ 10 for the three-
dimensional simulation.

Periodic boundary conditions were imposed in the horizontal
and spanwise directions, and free slip and no flux boundary conditions
are imposed at z ¼ 6 10. A third-order Runga–Kutta time-stepping
scheme was used. Nx, Ny, and Nz are the number of grid points in the
horizontal, spanwise, and vertical directions, respectively. For the two-
dimensional single wavelength simulation, multiple wavelength simu-
lation, and the three-dimensional single wavelength simulation, the
grids are (Nx *Nz)¼ (128*512), (Nx *Nz)¼ (2048*512), and
(Nx *Ny *Nz)¼ (128*128*512), respectively. Doubling the
number of points in each direction produced results with less
than 0.1% difference in the kinetic energy of the instability. The initial
J0 ¼ 0:13 and R0 ¼ 9. In this configuration, Holmboe waves appear
as the dominant shear instability.56 The initial Re0 ¼ 120 increases
several-fold as the background profiles diffuse vertically (see Table I).

To provide an optimal comparison with the linear stability the-
ory, the two-dimensional and three-dimensional single wavelength
simulations were run with an eigenfunction perturbation,51 which was
associated with the wavenumber of maximum growth rate. The per-
turbation, with the superposition of the leftward and rightward modes,
was obtained through linear stability described above, having an
amplitude of 0:05Du. Random noise with an amplitude of 60:005Du
was also added. This perturbation method is identical to that of
Carpenter et al.,57 triggering the rapid growth of Holmboe waves.

The two-dimensional multiple wavelength simulation was initial-
ized with random noise in the velocity field to stimulate the growth of

the instabilities and allow different wavenumbers to evolve initially.
The amplitude of the perturbation is uniformly distributed in the
range 60:05Du. A simple sinusoidal perturbation was also added to
the density interface with the initial wavenumber of maximum growth
(kinitial) and an amplitude of 0:05Du. A summary of the simulations is
shown in Table I. Unless explicitly stated, we will refer to the two-
dimensional single wavelength simulation (two-dimensional multiple
wavelength simulation) simply as single wavelength simulation (multi-
ple wavelength simulation) hereafter.

A. Single wavelength simulations

1. Counter-propagating Holmboe waves

Counter-propagating Holmboe waves vary between an “anti-
phase” state (/ ¼ 0) and an “in phase” state (/ ¼ p), as in standing
waves. Figure 3 is a plot of u0 for (a) / ¼ 0 and (b) / ¼ p. When the
two waves are in antiphase (/ ¼ 0), the density interface is nearly hor-
izontal, and the velocity perturbations are of maximum amplitude.
While the two waves are in phase (/ ¼ p), the deflection of the den-
sity interface is the greatest and the corresponding velocity perturba-
tions are minimal. The velocity and density perturbations do not
vanish completely at any phase.

2. Comparison between numerical simulations
and linear stability analysis

To compare the Reynolds stress in numerical simulations with
linear theory, we separate the flow field associated with the rightward
and leftward propagating modes by performing two-dimensional
Fourier transforms of the velocity perturbation fields at each vertical
level, similar to that of the wave field in Tedford et al.24 Figure 2 shows
the evolution of horizontally averaged Reynolds stress hu0w0ix in the
single wavelength simulation for the total field in panel (e), the left-
ward propagating mode in panel (f), and the rightward propagating
mode in panel (g). Note that the total Reynolds stress oscillates, and its

FIG. 3. Representative plots of the
horizontal velocity perturbation, u0, in
counter-propagating Holmboe waves for
(a) antiphase (/ ¼ 0, t¼ 76) and (b) in
phase (/ ¼ p, t¼ 82) in the single wave-
length simulation. The dashed line is the
density interface. Note that the magnitude
of w 0 is similarly maximal at / ¼ 0 and
minimal at / ¼ p.
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vertical extent and magnitude increase with time. As the two waves
propagate in opposite directions, the frequency of the oscillation in
this pattern is double that of the individual modes [see Eq. (19)].

Once the modes are separated with the Fourier transform, the
oscillations disappear in both the leftward and rightward propagating
modes [Figs. 2(f) and 2(g)]; only a growing pattern remains. The magni-
tude is mainly concentrated above (below) the density interface for the
rightward (leftward) propagating mode. It can be seen that the superpo-
sition of the two modes produces an additional phase-dependent wave
interaction field. This interaction field is shown in panel (h), obtained
through the subtraction of (f) and (g) from (e). A nearly symmetric pat-
tern of growth and decay is observed in each half-wave period.

Figures 4(a) and 4(b) are the comparison of the mean vertical
Reynolds stress profiles for each mode between linear stability analysis
and the single wavelength simulation within one wave period
(t ¼ 76$ 88), normalized for direct comparison. Over one wave period
in the simulation, the vertical diffusion of the background profiles is
negligible for each mode. The peak value of Reynolds stress is located
near z¼ 1 (z¼ – 1) for the rightward (leftward) propagating mode. The
horizontally averaged Reynolds stress, hu0w0ix;R or hu0w0ix;L, is generally
independent of time (panel b). This independence is consistent with the
linear stability analysis for an individual mode (panel a) illustrating that
hu0w0ix ¼ hu0w0it ¼ hu0w0ixt [see Eq. (20)].

The comparison of the total field between linear stability analysis
and the single wavelength simulation is shown in Figs. 4(c) and 4(d).
As expected, the profiles vary with time. The maximum amplitude
appears at / ¼ 0 (antiphase), where the instability extracts energy
most efficiently from the mean flow. While the small positive values at
/ ¼ p (in phase) mean that Holmboe instability returns some energy
back to the mean flow. On average over one period, the instability still
extracts energy from the background mean flow. The vertical structure
of the Reynolds stress from the simulation has the same form as that
predicted by the linear stability theory.

B. Multiple wavelength simulations
In the multiple wavelength simulation, we seeded a random

initial perturbation (similar to Carpenter et al.19) because seeding
an eigenfunction perturbation in the multiple wavelength simula-
tion, as we did in the single wavelength simulation, simply copies
the results of the single wavelength simulation over multiple
wavelengths.

1. Wavenumber shifting

The density and vorticity fields for the multiple wavelength simu-
lation are shown in Fig. 5. Starting with initial random perturbation at

FIG. 4. Comparison of the normalized Reynolds stress between the linear stability analysis (the left column) and the single wavelength simulation (the right column) at different
phases within a wave period. In linear stability analysis, four different phases with a p=2 interval are selected as representative. The corresponding times in the simulation are
t¼ 76 (/ ¼ 0), t¼ 79 (/ ¼ p=2), t¼ 82 (/ ¼ p), and t¼ 85 (/ ¼ 3p=2). Above the horizontal dashed line, (a) and (b) are the Reynolds stresses of individual modes, i.e.,
rightward and leftward propagating modes. Below the horizontal dashed line, (c) and (d) are the total Reynolds stresses; h&ixt represents hu0w 0ixt .
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t ¼ 0, energy is extracted from the mean flow by the instability and
fed into the wave field at, or very close to, the initial wavenumber of
maximum growth (kinitial). This results in approximately 16 wave-
lengths in the computational domain at an early time. Eventually, the
waves grow near the density interface, which can be seen in Fig. 5(a).
The wave peaks (upward-pointing cusps) are propagating to the right,
and the wave troughs (downward-pointing cusps) are propagating to
the left. The corresponding perturbation vorticity of the total, right-
ward, and leftward wave fields are shown in panels (b)–(d) respec-
tively. Similar to the direction of the cusps in the density field, the
perturbation vorticities above (below) the density interface are associ-
ated with the rightward (leftward) propagating waves. At this time
(t¼ 220), 11 waves (fewer than the initial 16 waves) were observed,
indicating that wave merging has occurred (discussed later in Sec.
IVB 2). The leading vorticities associated with the rightward (panel c)
and the leftward (panel d) propagating waves are irregularly spaced
and of varying strength. As a result, it is not feasible to make a direct
comparison of the horizontally averaged perturbation field as was
shown in Fig. 4 for the single wavelength simulation.

2. Comparison of growth rate between single
wavelength and multiple wavelength simulations

The evolution of the perturbation kinetic energy (hK 0ixz ¼ hu02
þw02ixz/2) for the single wavelength and multiple wavelength simula-
tions is plotted in Fig. 6. After a startup period in which the energy of
the initial perturbation rapidly decays, the waves grow. In the case of
the single wavelength simulation [Fig. 6(a)], the averaged perturbation
kinetic energy shows a strong oscillation throughout the whole simula-
tion. This oscillation has a period of 2x and is a result of energy
exchange between the perturbation kinetic energy and perturbation
potential energy58 in the standing wave highlighted in Fig. 3. Once the
leftward and rightward modes are separated and their individual
kinetic energies linearly summed (hK 0ixz;RþL ¼ hK 0ixz;R þ hK 0ixz;L),

the oscillation is absent, similar to the Reynolds stress in Eq. (21).
The perturbation kinetic energy for individual modes is approxi-
mately equal, i.e., hK 0ixz;R , hK 0ixz;L. Accounting for the evolving
background profiles, the kinetic energy for kinitial and kmax at each
time step is estimated from linear stability theory, also shown in
Fig. 6(a). Both the predicted growth rates continuously decrease
due to the diffusion of the background flow over time. The growth
rate of kmax overestimates the perturbation kinetic energy, while
that of kinitial¼ 0.5 successfully predicts the energy during the
growth period since the observed wavenumber in the single wave-
length simulation is fixed [observed k ¼ kinitial in Fig. 6(c)]. Once
the waves saturate (t> 160), the linear prediction (kinitial) begins to
deviate from the simulation indicating the dominance of non-
linear processes. During this non-linear period, the separation of
the perturbation kinetic energy for the rightward and leftward
propagating waves remains effective.

Unlike the strong oscillation in the averaged perturbation
kinetic energy in the single wavelength simulation, the growth of
perturbation kinetic energy in the multiple wavelength simulation
is relatively steady [Fig. 6(b)]. This is due to the fact the leftward
and rightward propagating waves have a distribution of phases and
amplitudes in x at any given time (e.g., Fig. 5), resulting in less
coherent interferences. Thus, the averaged kinetic energy is close
to the linear summation of the rightward and leftward waves
(hK 0ixz , hK 0ixz;RþL) when tZ 55. Before t¼ 55, the two wave
modes cannot be accurately separated by the Fourier transform
due to the non-modal Holmboe instability.59 Even during the
modal development period (tZ 55), the growth rate of perturba-
tion kinetic energy in the multiple wavelength simulation cannot
be directly compared with the linear stability analysis as the num-
ber of Holmboe waves (and thus the relevant choice of wavenum-
ber) is evolving in time. The predicted growth rate from the linear
stability analysis with the initial wavenumber (kinitial¼ 0.5) and the
wavenumber of maximum growth (kmax) is also shown in Fig. 6(b).
The perturbation kinetic energy in the multiple wavelength simu-
lation evolves between these two predicted results. The wave merg-
ing in this simulation results in maximum kinetic energy that is
larger than that in the single wavelength simulation. Additional
simulations (not included) with horizontal domain lengths
between Lx ¼ k0 and Lx ¼ 32k0 indicated that a domain longer
than 16k0 was found to have a negligible influence on the satura-
tion of perturbation kinetic energy.

The wave merging events are similar to those reported in
Carpenter et al.19 This process of losing waves results in an observed
wavenumber that is continually shifted downward, resulting in a redis-
tribution of energy. The merging events are due to vortex pairing as in
numerical simulations of Kelvin–Helmholtz instabilities (e.g., Refs.
60–63) and were also documented in the Holmboe instability through
laboratory experiments in Lawrence et al.20

The decreasing wavenumber of instabilities in the multiple wave-
length simulation and linear stability theory is plotted in Fig. 6(d).
Limited by the periodic boundary conditions, the observed wavelength
in the simulation evolves in discrete steps. In contrast, the linear stabil-
ity theory is not limited to steps as it is not constrained in the horizon-
tal domain. The decrease in kmax in time is due to the increasing shear
layer thickness that results from diffusion. This variation in wavenum-
ber is then reflected back to the observed Holmboe waves.

FIG. 5. Representative plots of the density fields (a) and perturbation vorticity field
(b)–(d) at t¼ 220 in the multiple wavelength simulation. (b)–(d) are the perturbation
vorticity field for the total, rightward propagating, and leftward propagating wave
modes, respectively. The black line represents the density interface.
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The growing mode in the simulation at every time step is not necessar-
ily the “instantaneously” most unstable mode in linear stability
analysis. Unlike the fixed wavenumber in the single wavelength simu-
lation [Fig. 6(c)], the observed wavenumber in the multiple wavelength
simulation is distributed between kinitial and kmax. Since the growth
rate of the instability does not rely on a single wavenumber, its associ-
ated perturbation kinetic energy is distributed across kinitial (16 waves)
to k¼ 0.31 (final; 10 waves) over time. However, both the observed
average wavenumber (!k) and estimation (kmax) approach a similar
value of k ¼ 0.31 for t > 250. During this later period (t ¼ 250–330),
the perturbation kinetic energy is also relatively steady, hereafter
referred to as the quasi-steady period (Table I).

V. VARIANCE ELLIPSE AND REYNOLDS STRESS
COMPARISONS

We compare (u0;w0) ellipses predicted using linear stability analysis
with the probability density functions (PDFs) of (u0;w0) obtained using
single wavelength and multiple wavelength simulations and those mea-
sured in laboratory experiment H3 of Lefauve et al.64,65 The linear stabil-
ity results are scaled for comparison with the simulation and laboratory
results. For each comparison, we use the mean density and velocity pro-
files, and the observed wavenumber, during the quasi-steady period. In
Sec. VA, we examine the (u0;w0) ellipses for the counter-propagating
leftward and rightward waves, separately. The corresponding Reynolds
stresses exhibit peaks on each side of the density interface (Fig. 7).

FIG. 6. Time evolution of the averaged perturbation kinetic energy (hK 0ixz) and wavenumber in the single wavelength simulation (the left column) and the multiple wavelength
simulation (the right column). In (a) and (b), the red solid line is the linear summation of the averaged perturbation kinetic energy from the rightward and leftward propagating
waves (hK 0ixz;RþL ¼ hK 0ixz;R þ hK 0ixz;L). The predicted growth rate from the linear stability analysis is denoted by the black dashed line (kinitial¼ 0.5) and black dotted line
(kmax), which is a function of time owing to the changing background profiles. In (c) and (d), the black lines are from the same linear stability analysis and the red solid line is
the observed average wavenumber in simulation with dots in (d) representing the number of waves evolving from the initial 16 waves (k¼ 0.5) to 10 waves (k¼ 0.31) in the
multiple wavelength simulation. The shaded region is used for the analysis in Sec. V, where it is referred to as the quasi-steady period.
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FIG. 7. Flow fields of the linear stability analysis and the single wavelength simulation (SWS) during the quasi-steady period. (a) Mean density and velocity profiles from the
simulation. The black circles indicate the elevations of the (u0;w 0)-pairs in (b) and (c). (b) and (c) are the comparisons of (u0;w 0)-pairs between the linear stability analysis and
the simulation for the leftward and rightward propagating modes, respectively. The (u0;w0)-pairs in the simulation are presented based on joint probability density functions
(PDFs) where the darker color denotes the higher probability. The ellipses obtained from linear stability analysis are depicted using black–white lines, and their magnitudes are
scaled with the simulation; their major axes are illustrated by dotted lines. (d) is the Reynolds stress. The (u0;w0)-pairs tilt toward the second and fourth quadrants within the
shear layer below (above) and the density interface for the leftward (rightward) mode. The superposition of (u0;w 0)-pairs within the red boxes (iii. at z¼ 1.4) is presented in
Figs. 8(a)–8(c).
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In Sec. V B, the (u0;w0) ellipses due to the superposition of the
counter-propagating waves at the vertical level of the peak Reynolds
stress are examined (Fig. 8).

A. Separated counter-propagating waves
The (u0;w0)-pairs for the leftward and rightward propagating

waves, obtained from linear stability analysis, are compared with
the single wavelength simulation during the quasi-steady period, in
Figs. 7(b) and 7(c). In the linear stability analysis, the (u0;w0)-pairs
form either circles or ellipses. Within the shear layer below the density
interface, the (u0;w0)-pairs associated with the leftward propagating
waves form ellipses that are oriented toward the second and fourth
quadrants [Fig. 7(b)], and the corresponding Reynolds stresses are
negative [Fig. 7(d)]. Above the density interface, the (u0;w0)-pairs
associated with the leftward propagating waves form circles and do
not contribute to the Reynolds stress. The (u0;w0)-pairs for the right-
ward propagating waves mirror those of the leftward propagating
waves [Fig. 7(c)], as do their Reynolds stresses [Fig. 7(d)]. The joint
PDFs of the (u0;w0)-pairs obtained in the simulation appear as
“donut”-shaped clouds that, in general, closely match the ellipses and
circles predicted using linear stability analysis [Figs. 7(b) and 7(c)].
However, deviations occur near z¼ 0 due to non-linear interactions
between the leftward and rightward propagating waves [panel (iv) in
Figs. 7(b) and 7(c)]. The counter-propagating vorticity waves modeled
by Tamarin et al.40 exhibit similar features.

The vertical profiles of Reynolds stress have the same basic shape
in both the single wavelength simulation and the linear stability analy-
sis [Fig. 7(d)]. The profiles are symmetric about z¼ 0, with a mini-
mum at z¼ 0 and peaks at z , 61:4, beyond, which the Reynolds
stresses asymptote to zero. The peak above (below) the interface is due
to the rightward (leftward) propagating wave. The vertical profiles of
the Reynolds stress in both the multiple wavelength simulation and
the laboratory experiment also exhibit the same basic shape as the sin-
gle wavelength simulation and the linear stability prediction with
peaks at z , 61:6 in the multiple wavelength simulation and z , 0:6
in the laboratory experiment (see Appendix A). The peaks occur at dif-
ferent locations due to different mean velocity and density profiles.

B. Superposed counter-propagating waves
In Figs. 7(b) and 7(c), we presented the (u0;w0) ellipses predicted

by linear stability theory separately for the leftward and rightward
propagating waves in the two-dimensional (2D) single wavelength
simulation; when these (u0;w0) ellipses are added together, the orienta-
tion and aspect ratio of the resulting ellipses are phase-dependent, as
shown in Fig. 8(a) for the 2D single wavelength simulation [Fig. 8(d)
for the three-dimensional (3D) single wavelength simulation, Fig. 8(g)
the multiple wavelength simulation, Fig. 8(j) for the experiment]. At
/ ¼ 0;p=2, and 3p=2, the major axes of the (u0;w0) ellipses tilt toward
the second and fourth quadrants, resulting in negative Reynolds
stresses (hu0w0ix < 0); while at / ¼ p, the (u0;w0) ellipses tilt toward
the 1st and 3rd quadrants, resulting in positive Reynolds stresses
(hu0w0ix > 0). These phase-dependent (u0;w0) ellipses due to the
counter-propagating waves are expressed in detail in Appendix B, and
similar results of the phase-dependent Reynolds stresses are shown in
Figs. 2(a) and 4(c).

When the (u0;w0) ellipses of the counter-propagating waves are
integrated over a full-wave period, the joint PDF of (u0;w0) is topologi-
cally similar to a four-spoked steering wheel as shown in Fig. 8(b) for
the 2D single wavelength simulation [Fig. 8(e) for the 3D single wave-
length simulation, Fig. 8(h) for the multiple wavelength simulation,
and Fig. 8(k) for the experiment]. The vertices (along major axes) of
these (u0;w0) ellipses combine to form the outer rim of the steering
wheel since more data points are concentrated near these vertices,
whereas the co-vertices (along minor axes) combine to form the
spokes and hub of the steering wheel. The formation of the steering
wheel structure due to multiple phases is described in Appendix B.
The corresponding PDF of (u0;w0) from the 2D single wavelength
simulation is shown in Fig. 8(c). While somewhat distorted, the tilted
elliptical shape with steering wheel features is still apparent and similar
to the linear stability predictions. The differences between them are
presumably due to the slow growth and decay of instabilities during
the quasi-steady period. The results obtained from the 2D single wave-
length simulation are almost indistinguishable from the 3D single
wavelength simulation [Figs. 8(d)–8(f)]. Note that the linear stability
analysis is 2D in both Figs. 8(a) and 8(d) but based on slightly different
background profiles due to slightly different conditions during the
quasi-steady period in 2D the simulation compared to the 3D
simulation.

To quantitatively compare the variance ellipses between the lin-
ear stability analysis and simulations, we calculate the tilt angle (h), the
ellipse anisotropy (a), and the ellipse shape parameter (A) as37

h¼ 1
2
arctan

2hu0w0i
hu0u0 $ w0w0i

! "
; (22a)

a ¼ 1
2
ðL2a $ L2bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu0u0 $ w0w0i2 þ 4hu0w0i2

q
; (22b)

A ¼
L2a $ L2b
L2a þ L2b

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu0u0 $ w0w0i2 þ 4hu0w0i2

q

hu0u0 þ w0w0i
; (22c)

where h&i represents the ensemble average; La and Lb are respectively
the length of semi-major and semi-minor axes; and A varies between 0
(circle) and 1 (straight line). Based on the geometric parameters of the
ellipse in Eqs. (22a) and (22b), the resulting Reynolds stress can be
written as

hu0w0i ¼ $ aj tanð2hÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanð2hÞ½ .2

q : (23)

Although the PDF from the 2D single wavelength simulation is
distorted, the geometric parameters of the variance ellipse are close to
those predicted by the linear stability analysis [Figs. 8(b) and 8(c)].
The predicted tilt angle (h) and ellipse shape parameter (A), respec-
tively, is 3% smaller and 10% larger than that in the simulation; as a
result, the predicted Reynolds stress is 8% larger than that in the simu-
lation. The geometric parameters obtained from the 3D single wave-
length simulation are all the same to within 5% of values obtained
from the 2D simulation [Figs. 8(e) and 8(f)].

The linear stability predictions from the multiple wavelength
simulation are very similar to those of the single wavelength simula-
tion [Figs. 8(g) and 8(h)] with minor differences attributable to the
slightly broader velocity and density profiles during the quasi-steady
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FIG. 8. The (u0;w 0)-pairs of the superposition of the leftward and rightward propagating waves at the vertical level of the peak Reynolds stress for (a)–(c) 2D single wave-
length simulation (SWS; the red box at z¼ 1.4 in Fig. 7); (d)–(f) 3D SWS (z¼ 1.4); (g)–(i) multiple wavelength simulation (MWS; z¼ 1.6); and (j)–(l) the laboratory experiment
of Lefauve et al.64 (z¼ 0.6). The (u0;w 0) ellipses obtained from linear stability analysis for / ¼ 0, p=2, p, and 3p=2 are presented in the left column (a), (d), (g), and (j). The
probability density functions (PDFs) of (u0;w 0) for a full-wave period are presented in the middle column (b), (e), (h), and (k). The PDFs for the 2D SWS, 3D SWS, MWS, and
experiment are presented in the right column (c), (f), (i), and (l). The geometric parameters (h, A, and a) of (u0;w 0) ellipses and the resultant Reynolds stresses (hu0w 0i) are
shown in the middle and right columns. The presence of multiple wavenumbers in the MWS and laboratory experiment results in solid cloud-like (u0;w 0) ellipses.
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period. However, the PDF of (u0;w0) forms a unimodal cloud in the
multiple wavelength simulation, rather than the steering wheel pattern
found in the single wavelength simulation [Fig. 8(c)] and the linear
stability prediction [Fig. 8(h)]. This unimodal cloud reflects the com-
plicated interactions between multiple counter-propagating waves of
varying phases, amplitudes, and wavelengths in the multiple wave-
length simulation [Fig. 8(i)]. Nevertheless, the cloud has a similar ori-
entation and anisotropy as the steering wheel pattern predicted by
linear stability theory; the resultant Reynolds stress values are also sim-
ilar with a 5% difference.

Qualitatively, the linear stability predictions for the laboratory
experiments are similar to those of single wavelength and multiple
wavelength simulations [Figs. 8(j) and 8(k)]. However, the orientation
and shape of the (u0;w0) ellipses are different. This is not surprising
since the background mean velocity profiles in the laboratory experi-
ment are nearly sinusoidal due to the no-slip condition at the top and
bottom channel walls, as opposed to the hyperbolic tangent profiles in
the single wavelength and multiple wavelength simulations. The joint
PDF of (u0;w0) in the laboratory experiment is similar to the unimodal
structure of the multiple wavelength simulation, due to the coexistence
of multiple Holmboe wavelengths [Fig. 8(i)]. This PDF cloud resem-
bles those characteristics of fully turbulent fields.34 It also shows a
comparable orientation and shape of ellipses as predicted from linear
stability theory. The Reynolds stress predicted by linear stability analy-
sis is marginally higher than that obtained from the laboratory
measurements.

Although the values of the Reynolds stress presented in Fig. 8
were obtained at moderate Reynolds numbers, it is worth noting that
they are consistent with those obtained in previous studies of much
higher Reynolds number flows. Dick and Marsalek66 estimated
hu0w0i ¼ 1:4*10$3 ð620%Þ from the measured interface height
along the Burlington Ship canal that connects Lake Ontario with
Hamilton Harbor. Also in the Burlington Ship canal, Lawrence et al.67

estimated hu0w0i ¼ 2*10$3 ð650%Þ from Acoustic Doppler current
profiler measurements. These values all lie within the range of esti-
mates compiled by Arita and Jirka68 from previous laboratory and
field studies.

VI. SUMMARY AND CONCLUSIONS
We have investigated the velocity perturbations and resulting

Reynolds stress generated by finite-amplitude Holmboe instabilities in
stratified shear flows at moderate Reynolds numbers. Linear stability
analysis was used to explain the initiation of Reynolds stresses by the
interaction of counter-propagating Holmboe waves. Then, single
wavelength and multiple wavelength simulations were used to study
the effects of wavenumber shifting on the instabilities from linear
growth to saturation and the influence of the presence of multiple
wavelengths on velocity perturbations and Reynolds stresses.

Linear stability analysis predicts that the (u0;w0)-pairs associated
with the leftward (rightward) propagating waves form ellipses within
the shear layer below (above) the density interface. These ellipses are
orientated toward the second and fourth quadrants, corresponding to
the tilted elliptical trajectories of particle orbits in Holmboe waves.
Combining the leftward and rightward modes yields (u0;w0) ellipses
whose orientation and aspect ratio are dependent on the phase of the
counter-propagating waves. The corresponding joint PDFs of (u0;w0)
over a full-wave period exhibit a steering wheel structure.

In the single wavelength simulation, the joint PDFs of (u0;w0) for
the rightward and the leftward propagating waves are donut shaped
ellipses, which closely match the ellipses predicted using linear stability
analysis. When the leftward and rightward modes are combined, the
joint PDF of (u0;w0) yields a steering wheel structure similar to that
predicted by linear theory. In the multiple wavelength simulation and
laboratory experiment, the presence of multiple waves with varying
wavelengths, phases, and amplitudes smears out the steering wheel
structure, leaving an elliptical cloud with similar orientation and shape
to the corresponding linear prediction.

The (u0;w0) ellipses obtained from the linear stability analysis,
numerical simulations, and the laboratory experiment are all pre-
dominantly oriented toward the second and fourth quadrants,
resulting in negative Reynolds stresses within the shear layer. The
vertical profile of the Reynolds stresses exhibits two peaks, above
and below the density interface. The upper and lower peaks are
respectively caused by the rightward and leftward propagating
Holmboe waves. The magnitude of Reynolds stresses obtained in
the present study is consistent with those reported in previous lab-
oratory and field investigations.66–68

The present work examines the velocity perturbations and
Reynolds stresses associated with the finite-amplitude Holmboe insta-
bility in unforced numerical simulations. These simulations were com-
pared with the forced (tilted tube) laboratory experiment of Lefauve
et al.50 Future research using forced numerical simulations, similar to
those of Smith et al.,6 could allow a closer comparison with laboratory
experiments. The present study has only considered a single point in
the Holmboe instability parameter space; results will differ at different
values of Re, J, Sc, and R. At higher Re (103–104), Salehipour et al.5

showed that the shear-aligned secondary convective instability can
play a crucial role in three-dimensionalization of the flow. Further
study is needed to examine how the nature of the Reynolds stress
changes as the Reynolds number changes. Also, we have limited our
investigation to the classical symmetric Holmboe instability where the
density interface is coincident with the center of the shear layer. This is
a special case of a more general situation in which the center of the
sheared and stratified layers may be offset from one another.20,57 If the
offset is sufficiently large, only one of the two Holmboe modes will
occur. A more comprehensive study would investigate this offset as
well as additional points in Re, J, Sc, and R parameter space.
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APPENDIX A: REYNOLDS STRESS PROFILES
IN THE MULTIPLEWAVELENGTH SIMULATION
AND LABORATORY

The vertical profiles of the Reynolds stress in the multiple
wavelength simulation and laboratory experiment are similar to
those predicted by the linear stability analysis (Fig. 9). As in the sin-
gle wavelength simulation, both the multiple wavelength simulation
and laboratory experiment exhibit two peaks in the vertical profile,
one above and one below the density interface. A slight asymmetry
in the Reynolds stress profiles for the laboratory experiment results
from the experimental configuration, which leads to slightly stron-
ger vorticity above the interface than below the interface.50,64 This
slight asymmetry is also captured by the linear stability analysis.
There is also a region of positive Reynolds stress near the upper and
lower boundaries in the laboratory experiment, which again is likely
due to the irregular nature of the velocity profile.

APPENDIX B: EFFECT OF PHASE ON THE
SUPERIMPOSED VELOCITY PERTURBATION PAIRS

Following the normal mode assumption, the velocity perturba-
tions for the leftward propagating wave at the vertical level, z0, are
expressed as

u0ðLÞðx; z0; tÞ %
1
2

ûðLÞðz0ÞeiðkLx$xLtÞ þ c:c:
h i

; (B1a)

w0ðLÞðx; z0; tÞ %
1
2

ŵðLÞðz0ÞeiðkLx$xLtÞ þ c:c:
h i

; (B1b)

where ûL(ŵL) at one vertical level is a complex constant and
denoted by ûðLÞðz0Þ ¼ aL þ ibL and ŵðLÞðz0Þ ¼ cL þ idL. The con-
stants (aL; bL; cL; dL 2 R) are obtained by numerically solving the
T-G equation with the background mean velocity and density pro-
files. Then, the velocity perturbations for the leftward propagating
wave can be rewritten as

u0ðLÞðx; z0; tÞ ¼ aL cosðkLx $ xLtÞ $ bL sinðkLx $ xLtÞ; (B2a)

w0ðLÞðx; z0; tÞ ¼ cL cosðkLx $ xLtÞ $ dL sinðkLx $ xLtÞ: (B2b)

Noting hLðx; tÞ ¼ kLx $ xLt, we rewrite u0ðLÞ as

u0ðLÞðx; z0; tÞ ¼ aL coshL $ bL sinhL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2L þ b2L

q
sinðauL0 þ hLÞ;

(B3)

where auL0 ¼ tan$1½$ aL
bL
.. Similarly, the vertical velocity perturba-

tion at z0 is

w0ðLÞðx; z0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2L þ d2L

q
sinðawL0 þ hLÞ; (B4)

where awL0 ¼ tan$1½$ cL
dL
..

Applying the same procedures, the horizontal and vertical
velocity perturbations for the rightward propagating wave at z0 are
expressed as

u0ðRÞðx; z0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2R þ b2R

q
sinðauR0 þ hRÞ; (B5a)

w0ðRÞðx; z0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2R þ d2R

q
sinðawR0 þ hRÞ; (B5b)

where the constants (aR; bR; cR; dR 2 R) are obtained from the
eigenfunction of the rightward propagating wave, i.e., ûðRÞðz0Þ ¼ aR
þ ibR; ŵðRÞðz0Þ ¼ aR þ ibR; auR0 ¼ tan$1½$ aR

bR
.; awR0 ¼ tan$1½$ cR

dR
.;

and hRðx; tÞ ¼ kRx $ xRt.
For an individual wave, the horizontal and vertical velocity

perturbations are in phase. The temporal and spatial variations are
expressed by the term hL (hR) for the leftward (rightward) propagat-
ing wave, thus varying over either one wavelength or one wave
period yields the same result. The (u0;w0) ellipses for the leftward
and rightward propagating modes, at the vertical level of the peak
Reynolds stress (z0 ¼ 1:4) for example, are shown in the red box in
Figs. 7(b) and 7(c), respectively. It can be seen that the orientation
and aspect ratio of the ellipses depend on the constants aL; bL; cL,
and dL (aR; bR; cR, and dR) for the leftward (rightward) propagating
wave. Note that these constants depend on background mean veloc-
ity and density profiles.

FIG. 9. Comparison of the vertical profiles of the Reynolds stress between the lin-
ear stability analysis and (a) the multiple wavelength simulation and (b) the labora-
tory experiment.
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Now, we examine the superimposed velocity perturbation
pairs by the counter-propagating Holmboe waves. Based on Eqs.
(B3), (B4), (B5a), and (B5b), the superimposed velocity perturba-
tions are expressed as

u0ðx; z0; tÞ ¼ u0ðLÞ þ u0ðRÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2L þ b2L

q
sinðauL0 þ hLÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2R þ b2R

q
sinðauR0 þ hRÞ;

(B6a)

w0ðx; z0; tÞ ¼ w0ðLÞ þ w0ðRÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2L þ d2L

q
sinðawL0 þ hLÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2R þ d2R

q
sinðawR0 þ hRÞ:

(B6b)

The superimposed velocity perturbations contain the contribu-
tion from leftward and rightward propagating waves in hL ¼ kLx
$xLt and hR ¼ kRx $ xRt, respectively. For symmetric Holmboe
waves, we have kL ¼ kR ¼ k and xL ¼ $xR ¼ x. The superim-
posed velocity perturbations can be expressed as

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2L þ b2L

q
sinðauL0 þ kx $ /=2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2R þ b2R

q
sinðauR0 þ kx þ /=2Þ; (B7a)

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2L þ d2L

q
sinðawL0 þ kx $ /=2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2R þ d2R

q
sinðawR0 þ kx þ /=2Þ; (B7b)

where / ¼ 2xt is the phase between the leftward and rightward
propagating waves. When / ¼ 0, the superposition of counter-
propagating waves results in a density interface that is nearly
horizontal [Fig. 3(a)]. When / ¼ p, the resultant deflection of the
density interface is maximum [Fig. 3(b)]. For multiple values of
phase /, kx spanning over one wavelength yields different ellipses
with different aspect ratios and orientations as shown in Fig. 10(a).
The steering wheel structure in Fig. 8(b) is formed due to different
phases of the counter-propagating Holmboe waves. The intermedi-
ate steps forming this structure are illustrated in Fig. 10. When
/ ¼ 0, the (u0;w0)-pairs form an ellipse, the major axis of which tilt
toward the first and third quadrants. From / ¼ 0 to / ¼ p=2, the
aspect ratio and tilt angle of the (u0;w0) ellipses are continuously
evolving within the first and third quadrants. The joint PDF of

(u0;w0) integrated from / ¼ 0 to / ¼ p=2 is smeared and forms a
shape with a higher probability at the edge and near the hub [Fig. 10
(b)]. With progressively more phases included, the joint PDFs of
(u0;w0) are shown in Figs. 10(c)–10(e). Eventually, when the (u0;w0)
ellipses are integrated over a full-wave period, the joint PDF of
(u0;w0) is topologically similar to a four-spoked steering wheel as
shown in Fig. 8(b).
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